Skip to main content

Molecular Cell Biology of Apoptosis and Necroptosis in Cancer

  • Chapter
  • First Online:
Apoptosis in Cancer Pathogenesis and Anti-cancer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 930))

Abstract

Cell death is a major mechanism to eliminate cells in which DNA is damaged, organelles are stressed, or oncogenes are overexpressed, all events that would otherwise predispose cells to oncogenic transformation. The pathways that initiate and execute cell death are complex, genetically encoded, and subject to significant regulation. Consequently, while these pathways are often mutated in malignancy, there is considerable interest in inducing cell death in tumor cells as therapy. This chapter addresses our current understanding of molecular mechanisms contributing to two cell death pathways, apoptotic cell death and necroptosis, a regulated form of necrotic cell death. Apoptosis can be induced by a wide variety of signals, leading to protease activation that dismantles the cell. We discuss the physiological importance of each apoptosis pathway and summarize their known roles in cancer suppression and the current efforts at targeting each pathway therapeutically. The intricate mechanistic link between death receptor-mediated apoptosis and necroptosis is described, as well as the potential opportunities for utilizing necroptosis in the treatment of malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer. 1954;8(1):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  4. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9(3):231–41.

    Article  CAS  PubMed  Google Scholar 

  5. Ashkenazi A, Salvesen G. Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol. 2014;30:337–56.

    Article  CAS  PubMed  Google Scholar 

  6. Stroh C, Schulze-Osthoff K. Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Differ. 1998;5(12):997–1000.

    Article  CAS  PubMed  Google Scholar 

  7. MacKenzie SH, Clark AC. Death by caspase dimerization. Adv Exp Med Biol. 2012;747:55–73.

    Article  CAS  PubMed  Google Scholar 

  8. Mace PD, Riedl SJ. Molecular cell death platforms and assemblies. Curr Opin Cell Biol. 2010;22(6):828–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tait SW, Green DR. Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol. 2013;5(9). pii: a008706.

    Google Scholar 

  10. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621–32.

    Article  CAS  PubMed  Google Scholar 

  11. Chipuk JE, et al. The BCL-2 family reunion. Mol Cell. 2010;37(3):299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Llambi F, et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell. 2011;44(4):517–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Honarpour N, et al. Adult Apaf-1-deficient mice exhibit male infertility. Dev Biol. 2000;218(2):248–58.

    Article  CAS  PubMed  Google Scholar 

  14. Houde C, et al. Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. J Neurosci. 2004;24(44):9977–84.

    Article  CAS  PubMed  Google Scholar 

  15. Leonard JR, et al. Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice. J Neuropathol Exp Neurol. 2002;61(8):673–7.

    Article  PubMed  Google Scholar 

  16. Hakem R, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell. 1998;94(3):339–52.

    Article  CAS  PubMed  Google Scholar 

  17. Woo M, et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 1998;12(6):806–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lindsten T, et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell. 2000;6(6):1389–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takeuchi O, et al. Essential role of BAX, BAK in B cell homeostasis and prevention of autoimmune disease. Proc Natl Acad Sci U S A. 2005;102(32):11272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rathmell JC, et al. Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol. 2002;3(10):932–9.

    Article  CAS  PubMed  Google Scholar 

  21. Bouillet P, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science. 1999;286(5445):1735–8.

    Article  CAS  PubMed  Google Scholar 

  22. Zinkel SS, et al. Proapoptotic BID is required for myeloid homeostasis and tumor suppression. Genes Dev. 2003;17(2):229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Michalak EM, et al. In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ. 2008;15(6):1019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Villunger A, et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science. 2003;302(5647):1036–8.

    Article  CAS  PubMed  Google Scholar 

  25. Shibue T, et al. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev. 2003;17(18):2233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rinkenberger JL, et al. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev. 2000;14(1):23–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Veis DJ, et al. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993;75(2):229–40.

    Article  CAS  PubMed  Google Scholar 

  28. Motoyama N, et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science. 1995;267(5203):1506–10.

    Article  CAS  PubMed  Google Scholar 

  29. Opferman JT, et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science. 2005;307(5712):1101–4.

    Article  CAS  PubMed  Google Scholar 

  30. Opferman JT, et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature. 2003;426(6967):671–6.

    Article  CAS  PubMed  Google Scholar 

  31. Dzhagalov I, John AS, He YW. The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood. 2007;109(4):1620–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perciavalle RM, Opferman JT. Delving deeper: MCL-1’s contributions to normal and cancer biology. Trends Cell Biol. 2013;23(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hildeman D, et al. Apoptosis and the homeostatic control of immune responses. Curr Opin Immunol. 2007;19(5):516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strasser A, et al. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature. 1990;348(6299):331–3.

    Article  CAS  PubMed  Google Scholar 

  35. Beverly LJ, Varmus HE. MYC-induced myeloid leukemogenesis is accelerated by all six members of the antiapoptotic BCL family. Oncogene. 2009;28(9):1274–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McDonnell TJ, et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell. 1989;57(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  37. Biswas S, et al. A role for proapoptotic Bax and Bak in T-cell differentiation and transformation. Blood. 2010;116(24):5237–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meijerink JP, et al. Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood. 1998;91(8):2991–7.

    CAS  PubMed  Google Scholar 

  39. Campbell KJ, et al. Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Blood. 2010;116(17):3197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Glaser SP, et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 2012;26(2):120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiang Z, et al. Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. J Clin Invest. 2010;120(6):2109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beroukhim R, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kirkin V, Joos S, Zornig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta. 2004;1644(2–3):229–49.

    Article  CAS  PubMed  Google Scholar 

  44. Belmar J, Fesik SW. Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacol Ther. 2015;145:76–84.

    Article  CAS  PubMed  Google Scholar 

  45. Delbridge AR, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015;22(7):1071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Williams MM, Cook RS. Bcl-2 family proteins in breast development and cancer: could Mcl-1 targeting overcome therapeutic resistance? Oncotarget. 2015;6(6):3519–30.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fedorov LM, et al. Bcl-2 determines susceptibility to induction of lung cancer by oncogenic CRaf. Cancer Res. 2002;62(21):6297–303.

    CAS  PubMed  Google Scholar 

  48. Pena JC, Rudin CM, Thompson CB. A Bcl-xL transgene promotes malignant conversion of chemically initiated skin papillomas. Cancer Res. 1998;58(10):2111–6.

    CAS  PubMed  Google Scholar 

  49. Correia C, et al. Emerging understanding of Bcl-2 biology: implications for neoplastic progression and treatment. Biochim Biophys Acta. 2015;1853(7):1658–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Certo M, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 2006;9(5):351–65.

    Article  CAS  PubMed  Google Scholar 

  51. Montero J, et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. 2015;160(5):977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vela L, Marzo I. Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside. Curr Opin Pharmacol. 2015;23:74–81.

    Article  CAS  PubMed  Google Scholar 

  53. Gandhi L, et al. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol. 2011;29(7):909–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roberts AW, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol. 2012;30(5):488–96.

    Article  CAS  PubMed  Google Scholar 

  55. Wilson WH, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11(12):1149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kipps TJ, et al. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2015:56(10):2826–33.

    Google Scholar 

  57. Zhang H, et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 2007;14(5):943–51.

    CAS  PubMed  Google Scholar 

  58. Merino D, et al. Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood. 2012;119(24):5807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Souers AJ, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8.

    Article  CAS  PubMed  Google Scholar 

  60. Yecies D, et al. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood. 2010;115(16):3304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rudin CM, et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012;18(11):3163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Varadarajan S, et al. Evaluation and critical assessment of putative MCL-1 inhibitors. Cell Death Differ. 2013;20(11):1475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leverson JD, et al. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis. 2015;6, e1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Varadarajan S, et al. Maritoclax and dinaciclib inhibit MCL-1 activity and induce apoptosis in both a MCL-1-dependent and -independent manner. Oncotarget. 2015;6(14):12668–81.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Brumatti G, Ekert PG. Seeking a MCL-1 inhibitor. Cell Death Differ. 2013;20(11):1440–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walensky LD, Bird GH. Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem. 2014;57(15):6275–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Walensky LD, et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science. 2004;305(5689):1466–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Walensky LD, et al. A stapled BID BH3 helix directly binds and activates BAX. Mol Cell. 2006;24(2):199–210.

    Article  CAS  PubMed  Google Scholar 

  69. Cohen NA, et al. A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. Chem Biol. 2012;19(9):1175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. LaBelle JL, et al. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. J Clin Invest. 2012;122(6):2018–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vaillant F, et al. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell. 2013;24(1):120–9.

    Article  CAS  PubMed  Google Scholar 

  72. Mattoo AR, et al. Inhibition of NANOG/NANOGP8 downregulates MCL-1 in colorectal cancer cells and enhances the therapeutic efficacy of BH3 mimetics. Clin Cancer Res. 2014;20(21):5446–55.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang L, Ming L, Yu J. BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist Updat. 2007;10(6):207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Besbes S, et al. New dimension in therapeutic targeting of BCL-2 family proteins. Oncotarget. 2015;6(15):12862–71.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Li H, et al. Activation of caspase-2 in apoptosis. J Biol Chem. 1997;272(34):21010–7.

    Article  CAS  PubMed  Google Scholar 

  76. Khar A, et al. Caspase-2/NEDD-2 protease mediates execution of apoptosis in AK-5 tumor cells. Apoptosis. 1997;2(6):494–500.

    Article  CAS  PubMed  Google Scholar 

  77. Bouchier-Hayes L, Green DR. Caspase-2: the orphan caspase. Cell Death Differ. 2012;19(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  78. Janssens S, Tinel A. The PIDDosome, DNA-damage-induced apoptosis and beyond. Cell Death Differ. 2012;19(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  79. Shi M, et al. DNA-PKcs-PIDDosome: a nuclear caspase-2-activating complex with role in G2/M checkpoint maintenance. Cell. 2009;136(3):508–20.

    Article  CAS  PubMed  Google Scholar 

  80. Berube C, et al. Apoptosis caused by p53-induced protein with death domain (PIDD) depends on the death adapter protein RAIDD. Proc Natl Acad Sci U S A. 2005;102(40):14314–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bouchier-Hayes L, et al. Characterization of cytoplasmic caspase-2 activation by induced proximity. Mol Cell. 2009;35(6):830–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bonzon C, et al. Caspase-2-induced apoptosis requires bid cleavage: a physiological role for bid in heat shock-induced death. Mol Biol Cell. 2006;17(5):2150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Upton JP, et al. Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol. 2008;28(12):3943–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Olsson M, Forsberg J, Zhivotovsky B. Caspase-2: the reinvented enzyme. Oncogene. 2015;34(15):1877–82.

    Article  CAS  PubMed  Google Scholar 

  85. Thompson R, et al. An Inhibitor of PIDDosome Formation. Mol Cell. 2015;58(5):767–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Manzl C, et al. Caspase-2 activation in the absence of PIDDosome formation. J Cell Biol. 2009;185(2):291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peintner L, et al. The tumor-modulatory effects of Caspase-2 and Pidd1 do not require the scaffold protein Raidd. Cell Death Differ. 2015;22:1803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sidi S, et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell. 2008;133(5):864–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Manzl C, et al. Death of p53-defective cells triggered by forced mitotic entry in the presence of DNA damage is not uniquely dependent on Caspase-2 or the PIDDosome. Cell Death Dis. 2013;4, e942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bergeron L, et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev. 1998;12(9):1304–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang Y, et al. Caspase-2 deficiency enhances aging-related traits in mice. Mech Ageing Dev. 2007;128(2):213–21.

    Article  CAS  PubMed  Google Scholar 

  92. Wilson CH, et al. Age-related proteostasis and metabolic alterations in Caspase-2-deficient mice. Cell Death Dis. 2015;6, e1597.

    Article  CAS  PubMed Central  Google Scholar 

  93. Shalini S, et al. Caspase-2 protects against oxidative stress in vivo. Oncogene. 2015;34:4995–5002.

    Article  CAS  PubMed  Google Scholar 

  94. Sharma R, et al. Caspase-2 maintains bone homeostasis by inducing apoptosis of oxidatively-damaged osteoclasts. PLoS One. 2014;9(4), e93696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kumar S. Caspase function in programmed cell death. Cell Death Differ. 2007;14(1):32–43.

    Article  CAS  PubMed  Google Scholar 

  96. Manzl C, et al. PIDDosome-independent tumor suppression by Caspase-2. Cell Death Differ. 2012;19(10):1722–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dorstyn L, et al. Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability. Cell Death Differ. 2012;19(8):1288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Puccini J, et al. Loss of caspase-2 augments lymphomagenesis and enhances genomic instability in Atm-deficient mice. Proc Natl Acad Sci U S A. 2013;110(49):19920–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ho LH, et al. A tumor suppressor function for caspase-2. Proc Natl Acad Sci U S A. 2009;106(13):5336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Holleman A, et al. Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia. Blood. 2005;106(5):1817–23.

    Article  CAS  PubMed  Google Scholar 

  101. Terry MR, et al. Caspase-2 impacts lung tumorigenesis and chemotherapy response in vivo. Cell Death Differ. 2015;22(5):719–30.

    Article  CAS  PubMed  Google Scholar 

  102. Parsons MJ, et al. Genetic deletion of caspase-2 accelerates MMTV/c-neu-driven mammary carcinogenesis in mice. Cell Death Differ. 2013;20(9):1174–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dorstyn L, et al. An unexpected role for caspase-2 in neuroblastoma. Cell Death Dis. 2014;5, e1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ren K, et al. Tumor-suppressing function of caspase-2 requires catalytic site Cys-320 and site Ser-139 in mice. J Biol Chem. 2012;287(18):14792–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Thompson R, Eastman A. The cancer therapeutic potential of Chk1 inhibitors: how mechanistic studies impact on clinical trial design. Br J Clin Pharmacol. 2013;76(3):358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dent P, et al. CHK1 inhibitors in combination chemotherapy: thinking beyond the cell cycle. Mol Interv. 2011;11(2):133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Weber AM, Ryan AJ. ATM and ATR as therapeutic targets in cancer. Pharmacol Ther. 2015;149:124–38.

    Article  CAS  PubMed  Google Scholar 

  108. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3(9):745–56.

    Article  CAS  PubMed  Google Scholar 

  109. Oberst A, et al. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J Biol Chem. 2010;285(22):16632–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Walczak H, Sprick MR. Biochemistry and function of the DISC. Trends Biochem Sci. 2001;26(7):452–3.

    Article  CAS  PubMed  Google Scholar 

  111. Kallenberger SM, et al. Intra- and interdimeric caspase-8 self-cleavage controls strength and timing of CD95-induced apoptosis. Sci Signal. 2014;7(316):ra23.

    Google Scholar 

  112. McStay GP, Salvesen GS, Green DR. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ. 2008;15(2):322–31.

    Article  CAS  PubMed  Google Scholar 

  113. Tu S, et al. In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nat Cell Biol. 2006;8(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  114. Pop C, et al. FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J. 2011;433(3):447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Varfolomeev EE, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity. 1998;9(2):267–76.

    Article  CAS  PubMed  Google Scholar 

  116. Gunther C, et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature. 2011;477(7364):335–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kovalenko A, et al. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J Exp Med. 2009;206(10):2161–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kang TB, et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol. 2004;173(5):2976–84.

    Article  CAS  PubMed  Google Scholar 

  119. Krajewska M, et al. Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity. PLoS One. 2011;6(9), e24341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dillon CP, et al. Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep. 2012;1(5):401–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lemmers B, et al. Essential role for caspase-8 in Toll-like receptors and NFkappaB signaling. J Biol Chem. 2007;282(10):7416–23.

    Article  CAS  PubMed  Google Scholar 

  122. Salmena L, Hakem R. Caspase-8 deficiency in T cells leads to a lethal lymphoinfiltrative immune disorder. J Exp Med. 2005;202(6):727–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Beisner DR, et al. Cutting edge: innate immunity conferred by B cells is regulated by caspase-8. J Immunol. 2005;175(6):3469–73.

    Article  CAS  PubMed  Google Scholar 

  124. Teitz T, et al. Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Res. 2013;73(13):4086–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Teitz T, et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med. 2000;6(5):529–35.

    Article  CAS  PubMed  Google Scholar 

  126. Ashley DM, et al. Caspase 8 is absent or low in many ex vivo gliomas. Cancer. 2005;104(7):1487–96.

    Article  CAS  PubMed  Google Scholar 

  127. Soung YH, et al. CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res. 2005;65(3):815–21.

    CAS  PubMed  Google Scholar 

  128. Soung YH, et al. Caspase-8 gene is frequently inactivated by the frameshift somatic mutation 1225_1226delTG in hepatocellular carcinomas. Oncogene. 2005;24(1):141–7.

    Article  CAS  PubMed  Google Scholar 

  129. Shivapurkar N, et al. Differential inactivation of caspase-8 in lung cancers. Cancer Biol Ther. 2002;1(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  130. Harada K, et al. Deregulation of caspase 8 and 10 expression in pediatric tumors and cell lines. Cancer Res. 2002;62(20):5897–901.

    CAS  PubMed  Google Scholar 

  131. Pingoud-Meier C, et al. Loss of caspase-8 protein expression correlates with unfavorable survival outcome in childhood medulloblastoma. Clin Cancer Res. 2003;9(17):6401–9.

    CAS  PubMed  Google Scholar 

  132. Sun T, et al. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet. 2007;39(5):605–13.

    Article  CAS  PubMed  Google Scholar 

  133. Li C, et al. The six-nucleotide deletion/insertion variant in the CASP8 promoter region is inversely associated with risk of squamous cell carcinoma of the head and neck. Cancer Prev Res (Phila). 2010;3(2):246–53.

    Article  CAS  Google Scholar 

  134. MacKenzie SH, Schipper JL, Clark AC. The potential for caspases in drug discovery. Curr Opin Drug Discov Devel. 2010;13(5):568–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen L, et al. CD95 promotes tumour growth. Nature. 2010;465(7297):492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jing Y, et al. Tumor necrosis factor-alpha promotes tumor growth by inducing vascular endothelial growth factor. Cancer Invest. 2011;29(7):485–93.

    CAS  PubMed  Google Scholar 

  137. Zhang M, et al. The roles of ROS and caspases in TRAIL-induced apoptosis and necroptosis in human pancreatic cancer cells. PLoS One. 2015;10(5), e0127386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Vercammen D, et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med. 1998;187(9):1477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Degterev A, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4(5):313–21.

    Article  CAS  PubMed  Google Scholar 

  140. Degterev A, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112–9.

    Article  CAS  PubMed  Google Scholar 

  141. Cho YS, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6):1112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dondelinger Y, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7(4):971–81.

    Article  CAS  PubMed  Google Scholar 

  143. Galluzzi L, Kepp O, Kroemer G. MLKL regulates necrotic plasma membrane permeabilization. Cell Res. 2014;24(2):139–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hildebrand JM, et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci U S A. 2014;111(42):15072–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Murphy JM, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013;39(3):443–53.

    Article  CAS  PubMed  Google Scholar 

  146. Rodriguez DA, et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. 2016;23:76–88.

    Article  CAS  PubMed  Google Scholar 

  147. Shin YK, Kim J, Yang Y. Switch for the necroptotic permeation pore. Structure. 2014;22(10):1374–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Su L, et al. A plug release mechanism for membrane permeation by MLKL. Structure. 2014;22(10):1489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Oberst A, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 2011;471(7338):363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Green DR, et al. RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. Mol Cell. 2011;44(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Feoktistova M, et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell. 2011;43(3):449–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tenev T, et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell. 2011;43(3):432–48.

    Article  CAS  PubMed  Google Scholar 

  153. Mandal P, et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell. 2014;56(4):481–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Vanden Berghe T, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15(2):135–47.

    Article  CAS  PubMed  Google Scholar 

  155. Linkermann A, et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2013;110(29):12024–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kaiser WJ, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 2013;288(43):31268–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Thapa RJ, et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci U S A. 2013;110(33):E3109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Linkermann A, et al. Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-alpha-induced shock. Mol Med. 2012;18:577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lukens JR, et al. RIP1-driven autoinflammation targets IL-1alpha independently of inflammasomes and RIP3. Nature. 2013;498(7453):224–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lukens JR, et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 2014;516(7530):246–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gurung P, et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 2014;192(4):1835–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Philip NH, et al. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-kappaB and MAPK signaling. Proc Natl Acad Sci U S A. 2014;111(20):7385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cullen SP, et al. Diverse activators of the NLRP3 inflammasome promote IL-1beta secretion by triggering necrosis. Cell Rep. 2015;11(10):1535–48.

    Article  CAS  PubMed  Google Scholar 

  164. Kearney CJ, et al. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. Cell Death Differ. 2015;22:1313–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kaiser WJ, et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 2011;471(7338):368–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dillon CP, et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell. 2014;157(5):1189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kaiser WJ, et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc Natl Acad Sci U S A. 2014;111(21):7753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rickard JA, et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell. 2014;157(5):1175–88.

    Article  CAS  PubMed  Google Scholar 

  169. Yeh WC, et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science. 1998;279(5358):1954–8.

    Article  CAS  PubMed  Google Scholar 

  170. Yeh WC, et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity. 2000;12(6):633–42.

    Article  CAS  PubMed  Google Scholar 

  171. Zhang H, et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature. 2011;471(7338):373–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Newton K, Sun X, Dixit VM. Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol Cell Biol. 2004;24(4):1464–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kelliher MA, et al. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity. 1998;8(3):297–303.

    Article  CAS  PubMed  Google Scholar 

  174. Dannappel M, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 2014;513(7516):90–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lee P, et al. Dynamic expression of epidermal caspase 8 simulates a wound healing response. Nature. 2009;458(7237):519–23.

    Article  CAS  PubMed  Google Scholar 

  176. Takahashi N, et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature. 2014;513(7516):95–9.

    Article  CAS  PubMed  Google Scholar 

  177. Roderick JE, et al. Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. Proc Natl Acad Sci U S A. 2014;111(40):14436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Liu P, et al. Dysregulation of TNFalpha-induced necroptotic signaling in chronic lymphocytic leukemia: suppression of CYLD gene by LEF1. Leukemia. 2012;26(6):1293–300.

    Article  CAS  PubMed  Google Scholar 

  179. Vucur M, et al. RIP3 inhibits inflammatory hepatocarcinogenesis but promotes cholestasis by controlling caspase-8- and JNK-dependent compensatory cell proliferation. Cell Rep. 2013;4(4):776–90.

    Article  CAS  PubMed  Google Scholar 

  180. Schmidt SV, et al. RIPK3 expression in cervical cancer cells is required for PolyIC-induced necroptosis, IL-1alpha release, and efficient paracrine dendritic cell activation. Oncotarget. 2015;6(11):8635–47.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Melo-Lima S, Celeste Lopes M, Mollinedo F. Necroptosis is associated with low procaspase-8 and active RIPK1 and -3 in human glioma cells. Oncoscience. 2014;1(10):649–64.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Geserick P, et al. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis. 2015;6, e1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. McCabe KE, et al. Triggering necroptosis in cisplatin and IAP antagonist-resistant ovarian carcinoma. Cell Death Dis. 2014;5, e1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Oliver Metzig M, et al. Inhibition of caspases primes colon cancer cells for 5-fluorouracil-induced TNF-alpha-dependent necroptosis driven by RIP1 kinase and NF-kappaB. Oncogene. 2015 Nov 2. doi:10.1038/onc.2015.398.

    Google Scholar 

  185. Moriwaki K, et al. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 2015;6, e1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol. 2015;94(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  187. Fulda S. Therapeutic exploitation of necroptosis for cancer therapy. Semin Cell Dev Biol. 2014;35:51–6.

    Article  CAS  PubMed  Google Scholar 

  188. Mohammad RM, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35:S78–103.

    Article  PubMed  CAS  Google Scholar 

  189. Takemura R, et al. PolyI:C-induced, TLR3/RIP3-dependent necroptosis backs up immune effector-mediated tumor elimination in vivo. Cancer Immunol Res. 2015;3(8):902–14.

    Article  CAS  PubMed  Google Scholar 

  190. Yatim N, et al. RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells. Science. 2015;350(6258):328–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Heather Dillon and Katherine Baran for their critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher P. Dillon or Douglas R. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dillon, C.P., Green, D.R. (2016). Molecular Cell Biology of Apoptosis and Necroptosis in Cancer. In: Gregory, C. (eds) Apoptosis in Cancer Pathogenesis and Anti-cancer Therapy. Advances in Experimental Medicine and Biology, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-319-39406-0_1

Download citation

Publish with us

Policies and ethics