The Surakarta Bot Revealed

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 614)


The board game Surakarta has been played at the ICGA Computer Olympiad since 2007. In this paper the ideas behind the agent SIA, which won the competition five times, are revealed. The paper describes its \(\alpha \beta \)-based variable-depth search mechanism. Search enhancements such as multi-cut forward pruning and Realization Probability Search are shown to improve the agent considerably. Additionally, features of the static evaluation function are presented. Experimental results indicate that features, which reward distribution of the pieces and penalize pieces that clutter together, give a genuine improvement in the playing strength.


Evaluation Function Leaf Node Capture Move Board Game Realization Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Special thanks go to the anonymous referees whose comments helped to improve this paper.


  1. 1.
    Akl, S.G., Newborn, M.M.: The principal continuation and the killer heuristic. In: 1977 ACM Annual Conference Proceedings, pp. 466–473. ACM, New York (1977)Google Scholar
  2. 2.
    Björnsson, Y., Marsland, T.A.: Multi-cut alpha-beta pruning in game-tree search. Theoret. Comput. Sci. 252(1–2), 177–196 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Breuker, D.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: Replacement schemes and two-level tables. ICCA J. 19(3), 175–180 (1996)Google Scholar
  4. 4.
    Chen, J.C., Wu, I.C., Tseng, W.J., Lin, B.H., Chang, C.H.: Job-Level Alpha-Beta Search. IEEE Trans. Comput. Intell. AI Games 7(1), 28–38 (2015)CrossRefGoogle Scholar
  5. 5.
    Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 20(5), 551–561 (1971)CrossRefzbMATHGoogle Scholar
  6. 6.
    Handscomb, K.: Surakarta. Abstr. Games 4(1), 8 (2003)Google Scholar
  7. 7.
    Kaindl, H., Horacek, H., Wagner, M.: Selective search versus brute force. ICCA J. 9(3), 140–145 (1986)Google Scholar
  8. 8.
    Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6(4), 293–326 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Marsland, T.A., Björnsson, Y.: Variable-depth search. In: van den Herik, H.J., Monien, B. (eds.) Advances in Computer Games 9, pp. 9–24. Universiteit Maastricht, Maastricht (2001)Google Scholar
  10. 10.
    Marsland, T.: A review of game-tree pruning. ICCA J. 9(1), 3–19 (1986)Google Scholar
  11. 11.
    Schaeffer, J., Plaat, A.: New advances in alpha-beta searching. In: Proceedings of the 1996 ACM 24th Annual Conference on Computer Science, pp. 124–130. ACM, New York (1996)Google Scholar
  12. 12.
    Schrüfer, G.: A strategic quiescence search. ICCA J. 12(1), 3–9 (1989)Google Scholar
  13. 13.
    Tsuruoka, Y., Yokoyama, D., Chikayama, T.: Game-tree search algorithm based on realization probability. ICGA J. 25(3), 132–144 (2002)Google Scholar
  14. 14.
    Winands, M.H.M., Björnsson, Y.: Enhanced realization probability search. New Math. Nat. Comput. 4(3), 329–342 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Winands, M.H.M., van den Herik, H.J., Uiterwijk, J.W.H.M., van der Werf, E.C.D.: Enhanced forward pruning. Inf. Sci. 175(4), 315–329 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Winands, M.H.M., van der Werf, E.C.D., van den Herik, H.J., Uiterwijk, J.W.H.M.: The relative history heuristic. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 262–272. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Games and AI Group, Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations