Multi-agent Retrograde Analysis

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 614)


We are interested in the optimal solutions to multi-agent planning problems. We use as an example the predator-prey domain which is a classic multi-agent problem. We propose to solve it on small boards using retrograde analysis.


Retrograde Analysis Multi-agent Planning Problems Small Board Endgame Tables Predator-prey Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bellman, R.: On the application of dynamic programing to the determination of optimal play in chess and checkers. Proc. Nat. Acad. Sci. U.S.A. 53(2), 244 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boissac, F., Cazenave, T.: De nouvelles heuristiques de recherche appliquées à la résolution d’Atarigo. In: Intelligence Artificielle et Jeux, pp. 127–141. Hermes Science (2006)Google Scholar
  3. 3.
    Brenda, M., Jagannathan, V., Dodhiawala, R.: On optimal cooperation of knowledge sources-an empirical investigation. Boeing Adv. Technol. Center, Boeing Comput. Services, Seattle, WA, Technical report, BCSG2010-28 (1986)Google Scholar
  4. 4.
    Cazenave, T.: Generation of patterns with external conditions for the game of Go. Adv. Comput. Games 9, 275–293 (2001)Google Scholar
  5. 5.
    Fang, H., Hsu, T., Hsu, S.-C.: Construction of Chinese Chess endgame databases by retrograde analysis. In: Marsland, T., Frank, I. (eds.) CG 2001. LNCS, vol. 2063, pp. 96–114. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Gasser, R.: Solving Nine Men’s Morris. Comput. Intell. 12(1), 24–41 (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Grefenstette, J.J.: Lamarckian learning in multi-agent environments. Technical report, DTIC Document (1995)Google Scholar
  8. 8.
    Haynes, T., Sen, S.: Evolving behavioral strategies in predators and prey. In: Weiss, G., Sen, S. (eds.) IJCAI-WS 1995. LNCS, vol. 1042, pp. 113–126. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Jim, K.C., Giles, C.L.: Talking helps: evolving communicating agents for the predator-prey pursuit problem. Artif. Life 6(3), 237–254 (2000)CrossRefGoogle Scholar
  10. 10.
    Korf, R.E.: A simple solution to pursuit games. In: Proceedings of the 11th International Workshop on Distributed Artificial Intelligence, pp. 183–194 (1992)Google Scholar
  11. 11.
    Luke, S., Spector, L.: Evolving teamwork and coordination with genetic programming. In: Proceedings of the 1st Annual Conference on Genetic Programming, pp. 150–156. MIT Press (1996)Google Scholar
  12. 12.
    Moldenhauer, C., Sturtevant, N.R.: Evaluating strategies for running from the cops. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, Pasadena, California, USA, 11–17 July 2009, pp. 584–589 (2009)Google Scholar
  13. 13.
    Romein, J.W., Bal, H.E.: Solving Awari with parallel retrograde analysis. IEEE Comput. 36(10), 26–33 (2003)CrossRefGoogle Scholar
  14. 14.
    Saffidine, A., Jouandeau, N., Buron, C., Cazenave, T.: Material symmetry to partition endgame tables. In: Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 187–198. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Schadd, M.P.D., Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J., Bergsma, M.H.J.: Best play in Fanorona leads to draw. New Math. Nat. Comput. 4(3), 369–387 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schaeffer, J.: The history heuristic and alpha-beta search enhancements in practice. IEEE Trans. Pattern Anal. Mach. Intell. 11(11), 1203–1212 (1989)CrossRefGoogle Scholar
  17. 17.
    Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., Sutphen, S.: Checkers is solved. Science 317(5844), 1518–1522 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Stephens, L.M., Merx, M.B.: Agent organization as an effector of DAI system performance. In: Ninth Workshop on Distributed Artificial Intelligence, Rosario Resort, Eastsound, Washington, pp. 263–292 (1989)Google Scholar
  19. 19.
    Thompson, K.: Retrograde analysis of certain endgames. ICCA J. 9(3), 131–139 (1986)Google Scholar
  20. 20.
    Thompson, K.: 6-piece endgames. ICCA J. 19(4), 215–226 (1996)Google Scholar
  21. 21.
    van der Werf, E.C.D., Winands, M.H.M.: Solving Go for rectangular boards. ICGA J. 32(2), 77–88 (2009)CrossRefGoogle Scholar
  22. 22.
    Yong, C.H., Miikkulainen, R.: Cooperative coevolution of multi-agent systems. Technical report, AI07-338, University of Texas at Austin, Austin, TX (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.LAMSADEUniversité Paris-DauphineParisFrance

Personalised recommendations