Evaluation of Aggregated Systems in Smart Grids: An Example Use-Case for the Energy Option Model

  • Nils LooseEmail author
  • Yudha Nurdin
  • Sajad Ghorbani
  • Christian Derksen
  • Rainer Unland
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 616)


As a result of fast growing share of renewable energy production in the energy market the management of power and its distribution becomes more and more complex. The here presented Energy Option Model (EOM) seems to be a promising solution to handle this newly arisen complexity. This paper will present the EOM and analyze its capabilities in centralized evaluation of aggregated systems. The example use-case will be the charging process of a fleet of electric vehicles. While the results support the potential of the EOM to implement coordination strategies for aggregations of systems, they also show the general limitations of centralized control solutions for larger groups of systems in the context of smart grids.


Smart grids EV charging Central and decentral charging strategies Energy agent Energy option model 


  1. 1.
    Lehnhoff, S.: Dezentrales Vernetztes Energiemanagement: Ein Ansatz Auf Basis Eines Verteilten Adaptiven Realzeit-multiagentensystems. Vieweg + Teubner, Verlag (2010)CrossRefGoogle Scholar
  2. 2.
    Linnenberg, T., Wior, I., Schreiber, S., Fay, A.: A market-based multi-agent-system for decentralized power and grid control. In: 2011 IEEE 16th Conference on Emerging Technologies Factory Automation (ETFA), pp. 1–8 (2011)Google Scholar
  3. 3.
    Derksen, C., Linnenberg, T., Unland, R., Fay, A.: Structure and classification of unified energy agents as a base for the systematic development of future energy grids. Eng. Appl. Artif. Intell. 41, 310–324 (2015)CrossRefGoogle Scholar
  4. 4.
    Derksen, C., Linnenberg, T., Unland, R., Fay, A.: Unified energy agents as a base for the systematic development of future energy grids. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS, vol. 8076, pp. 236–249. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Derksen, C., Unland, R.: Energy agents - foundation for open future energy grids. In: Position Papers of the 2015 Federated Conference on Computer Science and Information Systems, vol. 6, pp. 259–264 (2015)Google Scholar
  6. 6.
    Kok, K., Warmer, C., Kamphuis, R., Mellstrand, P., Gustavsson, R.: Distributed control in the electricity infrastructure. In: 2005 International Conference on Future Power Systems, pp. 1–7 (2005)Google Scholar
  7. 7.
    Platt, G.: The decentralised control of electricity networks - intelligent and self-healing systems. In: Grid Interop 2007 Forum Proceedings (2007)Google Scholar
  8. 8.
    Das, R., Thirugnanam, K., Kumar, P., Lavudiya, R., Singh, M.: Mathematical modeling for economic evaluation of electric vehicle to smart grid interaction. IEEE Trans. Smart Grid 5, 712–721 (2014)CrossRefGoogle Scholar
  9. 9.
    Gan, L., Topcu, U., Low, S.: Optimal decentralized protocol for electric vehicle charging. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 5798–5804 (2011)Google Scholar
  10. 10.
    Kelly, L., Rowe, A., Wild, P.: Analyzing the impacts of plug-in electric vehicles on distribution networks in British Columbia. In: 2009 IEEE Electrical Power Energy Conference (EPEC), pp. 1–6 (2009)Google Scholar
  11. 11.
    Lopes, J.A.P., Soares, F.J., Almeida, P.M.R.: Integration of electric vehicles in the electric power system. Proc. IEEE 99, 168–183 (2011)CrossRefGoogle Scholar
  12. 12.
    Luo, Y., Zhu, T., Wan, S., Zhang, S., Li, K.: Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems. Energy 97, 359–368 (2016)CrossRefGoogle Scholar
  13. 13.
    Roe, C., Farantatos, E., Meisel, J., Meliopoulos, A.P., Overbye, T.: Power system level impacts of PHEVs. In: 42nd Hawaii International Conference on System Sciences, 2009. HICSS 2009, pp. 1–10 (2009)Google Scholar
  14. 14.
    Valogianni, K., Ketter, W., Collins, J., Zhdanov, D.: Effective management of electric vehicle storage using smart charging. In: Proceedings of 28th AAAI Conference on Artificial Intelligence, pp. 472–478 (2014)Google Scholar
  15. 15.
    Kahlen, M., Ketter, W.: Aggregating electric cars to sustainable virtual power plants: the value of flexibility in future electricity markets. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15) (2015)Google Scholar
  16. 16.
    Kempton, W., Tomic, J.: Vehicle-to-grid power fundamentals: calculating capacity and net revenue. J. Power Sources 144, 268–279 (2005)CrossRefGoogle Scholar
  17. 17.
    Rahman, I., Vasant, P.M., Singh, B.S.M., Abdullah-Al-Wadud, M., Adnan, N.: Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renew. Sustain. Energy Rev. 58, 1039–1047 (2016)CrossRefGoogle Scholar
  18. 18.
    Fazelpour, F., Vafaeipour, M., Rahbari, O., Rosen, M.A.: Intelligent optimization to integrate a plug-in hybrid electric vehicle smart parking lot with renewable energy resources and enhance grid characteristics. Energy Convers. Manag. 77, 250–261 (2014)CrossRefGoogle Scholar
  19. 19.
    Zhu, Z., Lambotharan, S., Chin, W.H., Fan, Z.: A stochastic optimization approach to aggregated electric vehicles charging in smart grids. In: 2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), pp. 51–56 (2014)Google Scholar
  20. 20.
    Malandrino, F., Casetti, C., Chiasserini, C.-F., Reineri, M.: A game-theory analysis of charging stations selection by EV drivers. Perform. Eval. 83–84, 16–31 (2015)CrossRefGoogle Scholar
  21. 21.
    Tikader, R., Ganguly, S.: Energy management at municipal parking deck for charging of plug-in hybrid electric vehicles. In: 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1–5 (2014)Google Scholar
  22. 22.
    Zheng, Y., Dong, Z.Y., Xu, Y., Meng, K., Zhao, J.H., Qiu, J.: Electric vehicle battery charging/swap stations in distribution systems: comparison study and optimal planning. IEEE Trans. Power Syst. 29, 221–229 (2014)CrossRefGoogle Scholar
  23. 23.
    Liu, C., Zhou, Q., Hu, J., Xu, H., Zhang, H.: Modelling and simulation of centralized electric vehicle charging station wireless communication networks. Procedia Eng. 31, 746–750 (2012)CrossRefGoogle Scholar
  24. 24.
    Quan-Do, V., Jeong-Hyo, B., Jae-Duck, L., Seong-Joon, L.: Monitoring of power allocation in centralized electric vehicle charging spot system. Energy Procedia 17(Part B), 1542–1549 (2012)CrossRefGoogle Scholar
  25. 25.
    Ma, Z., Callaway, D., Hiskens, I.: Decentralized charging control for large populations of plug-in electric vehicles. In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 206–212 (2010)Google Scholar
  26. 26.
    Liu, M., Crisostomi, E., Gu, Y., Shorten, R.: Optimal distributed consensus algorithm for fair V2G power dispatch in a microgrid. In: 2014 IEEE International Electric Vehicle Conference (IEVC), pp. 1–7 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nils Loose
    • 1
    Email author
  • Yudha Nurdin
    • 1
  • Sajad Ghorbani
    • 1
  • Christian Derksen
    • 1
  • Rainer Unland
    • 1
  1. 1.DAWIS, ICBUniversity of Duisburg EssenEssenGermany

Personalised recommendations