Skip to main content

Comparison of SVM and Ontology-Based Text Classification Methods

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9692))

Included in the following conference series:

Abstract

This work addresses the challenging task of text categorization. The main goal is the comparison of two different approaches, i.e. Vector Space Model and ontology-based solutions. The authors compare and contrast them with respect to accuracy and processing flow, which affect the classification results. The ontology-based method outperforms its counter-part when it comes to category resolution, i.e. the number of categories which can be processed. On the other hand, the SVM-based module is much faster and performs well when trained on an appropriately-structured learning set. The authors performed a series of tests to compare the methods and, as expected, the ontology-based solution outperformed the SVM classifier. It reached a micro averaged F1-score of 0.90 with 2.8 million Wikipedia articles, whereas the SVM-based module did not exceed 0.86 with the same data set. The macro averaged F1-score of both solutions was inferior to the micro one and reached values of 0.75 and 0.57, for ontology and SVM-based solutions respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    cf. http://en.wikipedia.org/wiki/Madagascar.

References

  1. Ng, V., Dasgupta, S., Arifin, S.: Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews. In: Proceedings of the COLING/ACL on Main Conference Poster Sessions, Association for Computational Linguistics, pp. 611–618 (2006)

    Google Scholar 

  2. Durant, K.T., Smith, M.D.: Predicting the political sentiment of web log posts using supervised machine learning techniques coupled with feature selection. In: Nasraoui, O., Spiliopoulou, M., Srivastava, J., Mobasher, B., Masand, B. (eds.) WebKDD 2006. LNCS (LNAI), vol. 4811, pp. 187–206. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398. Springer, Heidelberg (1998)

    Google Scholar 

  4. Hotho, A., Maedche, A., Staab, S.: Ontology-based text document clustering. KI 16(4), 48–54 (2002)

    Google Scholar 

  5. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  6. Liu, Z., Lv, X., Liu, K., Shi, S.: Study on SVM compared with the other text classification methods. In: 2010 Second International Workshop on Education Technology and Computer Science (ETCS), vol. 1, pp. 219–222. IEEE (2010)

    Google Scholar 

  7. Polpinij, J., Ghose, A.K.: An ontology-based sentiment classification methodology for online consumer reviews. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 01, pp. 518–524. IEEE Computer Society (2008)

    Google Scholar 

  8. Zhao, L., Li, C.: Ontology based opinion mining for movie reviews. In: Karagiannis, D., Jin, Z. (eds.) KSEM 2009. LNCS, vol. 5914, pp. 204–214. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Muller, H.M., Kenny, E.E., Sternberg, W.: Textpresso: an ontology-based information retrieval and extraction system for biological literature. PLoS Biol. 2(11), e309 (2004)

    Article  Google Scholar 

  10. Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)

    Article  Google Scholar 

  11. Pohl, A.: Classifying the wikipedia articles into the OpenCyc taxonomy. In: Rizzo, G., Mendes, P., Charton, E., Hellmann, S., Kalyanpur, A., (eds.) Proceedings of the Web of Linked Entities Workshop in Conjuction with the 11th International Semantic Web Conference, pp. 5–16 (2012)

    Google Scholar 

  12. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  13. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support vector clustering. J. Mach. Learn. Res. 2, 125–137 (2002)

    MATH  Google Scholar 

  14. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  15. Piasecki, M., Szpakowicz, S., Broda, B.: A WordNet from the ground up. Oficyna Wydawnicza Politechniki Wrocawskiej, Wrocaw (2009)

    Google Scholar 

  16. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 5, 1–29 (2014)

    Google Scholar 

  18. Motik, B.: On the properties of metamodeling in owl. J. Logic Comput. 17(4), 617–637 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  20. Mendes, P., Jakob, M., Bizer, C.: DBpedia for NLP: A Multilingual Cross-domain Knowledge Base. In: LREC (to appear, 2012)

    Google Scholar 

  21. Zhang, X., LeCun, Y.: Text understanding from scratch (2015). arXiv preprint arXiv:1502.01710

  22. Agarwal, A., Chapelle, O., Dudík, M., Langford, J.: A reliable effective terascale linear learning system. J. Mach. Learn. Res. 15(1), 1111–1133 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Wróbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wróbel, K., Wielgosz, M., Smywiński-Pohl, A., Pietron, M. (2016). Comparison of SVM and Ontology-Based Text Classification Methods. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9692. Springer, Cham. https://doi.org/10.1007/978-3-319-39378-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39378-0_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39377-3

  • Online ISBN: 978-3-319-39378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics