Advertisement

Identification of a Multi-criteria Model of Location Assessment for Renewable Energy Sources

  • Wojciech SałabunEmail author
  • Jarosław Wątróbski
  • Andrzej Piegat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9692)

Abstract

The paper presents an identification method of a multi-criteria model of location assessment for renewable energy sources (RES). Sustainable energy systems have a growing importance for the long-term national strategic planning, which requires multi-facet decision making. The multi-criteria decision-analysis (MCDA) methods are widely used in this field. However, the used methods usually identify discrete values of preferences for selected alternatives. Most of the calculation must be repeated for each set of alternatives. This study is intended to identify the multi-criteria model in the space of the problem, not only for a few selected alternatives. The model should be independent of the considered alternatives and related strictly to the domain of criteria. As the result, a model identified once can be used repeatedly. For this purpose, the COMET method is used in the identification process. It has provided the fuzzy model, which can be used repeatedly for different sets of alternatives. The model is verified by using the set of possible offshore wind farm localization.

Keywords

Multi-criteria decision-making COMET method Fuzzy logic Renewable energy sources 

References

  1. 1.
    Afgan, N.H., Carvalho, M.G.: Multi-criteria assessment of new and renewable energy power plants. Energy 27(8), 739–755 (2002)CrossRefGoogle Scholar
  2. 2.
    Al-Yahyai, S., Charabi, Y., Gastli, A., Al-Badi, A.: Wind farm land suitability indexing using multi-criteria analysis. Renewable Energy 44, 80–87 (2012)CrossRefGoogle Scholar
  3. 3.
    Baysal, M.E., Sarucan, A., Kahraman, C., Engin, O.: The selection of renewable energy power plant technology using fuzzy data envelopment analysis. In: Proceedings of the 2011 World Congress on Engineering, pp. 1140–1143 (2011)Google Scholar
  4. 4.
    Cavallaro, F., Ciraolo, L.: A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy 33(2), 235–244 (2005)CrossRefGoogle Scholar
  5. 5.
    Forte, F., Nijkamp, P., Torrieri, F.: Shared choices on local sustainabiiity projects: a decision support framework. Res. Memorandum 2001, 24 (2001)Google Scholar
  6. 6.
    Georgopoulou, E., Lalas, D., Papagiannakis, L.: A multicriteria decision aid approach for energy planning problems: the case of renewable energy option. Eur. J. Oper. Res. 103(1), 38–54 (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Goumas, M., Lygerou, V.: An extension of the PROMETHEE method for decision making in fuzzy environment: ranking of alternative energy exploitation projects. Eur. J. Oper. Res. 123(3), 606–613 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Haralambopoulos, D.A., Polatidis, H.: Renewable energy projects: structuring a multi-criteria group decision-making framework. Renewable Energy 28(6), 961–973 (2003)CrossRefGoogle Scholar
  9. 9.
    Haurant, P., Oberti, P., Muselli, M.: Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica Island: a real case study using the ELECTRE outranking framework. Energy Policy 39(2), 676–688 (2011)CrossRefGoogle Scholar
  10. 10.
    Jankowski, J.: Integration of collective knowledge in fuzzy models supporting web design process. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS, vol. 6923, pp. 395–404. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Nigim, K., Munier, N., Green, J.: Pre-feasibility MCDM tools to aid communities in prioritizing local viable renewable energy sources. Renewable Energy 29(11), 1775–1791 (2004)CrossRefGoogle Scholar
  12. 12.
    Panwar, N.L., Kaushik, S.C., Kothari, S.: Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15(3), 1513–1524 (2011)CrossRefGoogle Scholar
  13. 13.
    Piegat, A., Sałabun, W.: Comparative analysis of MCDM methods for assessing the severity of Chronic Liver Disease. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9119, pp. 228–238. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  14. 14.
    Piegat, A., Sałabun, W.: Identification of a multicriteria decision-making model using the characteristic objects method. Appl. Comput. Intell. Soft Comput. 2014, 14 (2014)CrossRefGoogle Scholar
  15. 15.
    Piegat, A., Sałabun, W.: Nonlinearity of human multi-criteria in decision-making. J. Theor. Appl. Comput. Sci. 6(3), 36–49 (2012)Google Scholar
  16. 16.
    Sagbas, A., Mazmanoglu, A.: Use of multi-criteria decision analysis to assess alternative wind power plants. J. Eng. Res. 2(1), 147–161 (2014)Google Scholar
  17. 17.
    Sałabun, W.: Application of the fuzzy multi-criteria decision-making method to identify nonlinear decision models. Int. J. Comput. Appl. 89(15), 1–6 (2014)Google Scholar
  18. 18.
    Sałabun, W.: Reduction in the number of comparisons required to create matrix of expert judgment in the comet method. Manage. Prod. Eng. Rev. 5(3), 62–69 (2014)Google Scholar
  19. 19.
    Sałabun, W.: The characteristic objects method: a new distance based approach to multicriteria decisionmaking problems. J. Multi-Criteria Decis. Anal. 22(1–2), 37–50 (2015)CrossRefGoogle Scholar
  20. 20.
    Sałabun, W.: The use of fuzzy logic to evaluate the nonlinearity of human multi-criteria used in decision making. Przeglad Elektrotechniczny (Electr. Rev.) 88(10b), 235–238 (2012)Google Scholar
  21. 21.
    Topcu, Y.I., Ulengin, F.: Energy for the future: an integrated decision aid for the case of Turkey. Energy 29(1), 137–154 (2004)CrossRefGoogle Scholar
  22. 22.
    Twidell, J., Weir, T.: Renewable Energy Resources. Routledge, London (2015)Google Scholar
  23. 23.
    Wątróbski, J., Ziemba, P., Wolski, W.: Methodological aspects of Decision Support System for the location of renewable energy sources. In: Proceedings of the Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 5, pp. 1451–1459 (2015)Google Scholar
  24. 24.
    Wątróbski, J., Jankowski, J., Piotrowski, Z.: The selection of multicriteria method based on unstructured decision problem description. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS(LNAI), vol. 8733, pp. 454–465. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Ziemba, P., Piwowarski, M., Jankowski, J., Wątróbski, J.: Method of criteria selection and weights calculation in the process of web projects evaluation. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 684–693. Springer, Heidelberg (2014)Google Scholar
  26. 26.
    Wątróbski, J., Jankowski, J.: Knowledge management in MCDA domain. In: Proceedings of the Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 5, pp. 1445–1450 (2015)Google Scholar
  27. 27.
    Wątróbski, J., Jankowski, J.: Guideline for MCDA method selection in production management area. In: Rewski, P., Novikov, D., Bakhtadze, N., Zaikin, O. (eds.) New Frontiers in Information and Production Systems Modelling and Analysis. Intelligent Systems Reference Library, vol. 98, pp. 119–138. Springer, Heidelberg (2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wojciech Sałabun
    • 1
    Email author
  • Jarosław Wątróbski
    • 1
  • Andrzej Piegat
    • 1
  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations