Skip to main content

Electrically Conductive Polymer Nanocomposites

  • Chapter
  • First Online:
Book cover Controlling the Morphology of Polymers

Abstract

Polymer nanocomposites combine the properties of the matrix with those of the filler additive, thus allowing for the creation of totally new classes of materials with improved mechanical, electrical, optical and thermal properties. This combination of properties offers immense versatility and design capabilities and as consequence research in nanocomposites has been ever-growing. Traditionally carbon black has been the filler of choice for applications where electrical conductivity was required. This was done mainly due to the simplicity and versatility of the carbon black particles in combination with the relatively low cost preparation methods available (Kuhner and Voll 1993). Over the years other conductive fillers of anisotropic dimensions (high aspect ratio) like metal nanowires, graphene and carbon nanotubes (CNTs) have been introduced leading to a revolution in polymer nanocomposites. The potential of these fillers to achieve high conductivity due to their unique geometry at low or very low concentrations has attracted enormous scientific and commercial attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alig I, Pötschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, Villmow T, Establishment T (2012) Morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4

    Article  CAS  Google Scholar 

  • Ambrosetti G, Grimaldi C, Balberg I, Maeder T, Danani A, Ryser P (2010) Solution of the tunneling-percolation problem in the nanocomposite regime. Phys Rev B 81:155434

    Article  Google Scholar 

  • E. M. Andersen, G. R. Mitchell (eds) (2013) Rheology: theory, properties and practical applications, Novapress, London 2013

    Google Scholar 

  • Balberg I (1986) Excluded-volume explanation of Archie's law. Phys Rev B 33:3618

    Article  Google Scholar 

  • Balberg I (1987) Tunneling and nonuniversal conductivity in composite materials. Phys Rev Lett 59:1305

    Article  CAS  Google Scholar 

  • Balberg I (2009) Tunnelling and percolation in lattices and the continuum. J Phys D Appl Phys 42:064003

    Article  Google Scholar 

  • Balberg I, Binenbaum N (1987) Invariant properties of the percolation thresholds in the soft-corehard-core transition. Phys Rev A 35:5174

    Article  Google Scholar 

  • Balberg I, Andreson C, Alexander S, Wagner N (1984) Excluded volume and its relation to the onset of percolation. Phys Rev B 30:3933

    Article  Google Scholar 

  • Balberg I, Yang X (eds) (2012) Semiconductive polymer composites: principles, morphologies, properties and applications. Willey-VCH Verlag, London, p 145

    Google Scholar 

  • Balberg I, Azulay D, Toker D, Millo O (2004) Percolation and tunnelling in composite materials. Int J Mod Phys B 18:2091

    Article  CAS  Google Scholar 

  • Bauhofer W, kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486

    Article  CAS  Google Scholar 

  • Behnam A, Guo J, Ural A (2007) Effects of nanotube alignment and measurement direction on percolation resistivity in single-walled carbon nanotube films. J Appl Phys 102:044313

    Article  Google Scholar 

  • Berhan L, Sastry SM (2007) Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys Rev E 75:041120

    Article  CAS  Google Scholar 

  • Berman D, Orr BG, Jaeger HM, Goldman AM (1986) Conductances of filled two-dimensional networks. Phys Rev B 33:4301

    Article  Google Scholar 

  • Brigandi PJ, Cogen JM, Pearson RA (2014) Electrically conductive multiphase polymer blend carbon-based composites. Polym Eng Sci 54:1

    Article  CAS  Google Scholar 

  • Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube‑epoxy composites. Adv Mater 17:1186

    Article  CAS  Google Scholar 

  • Byrne MT, Gunko YK (2010) Recent advances in research on carbon nanotube-polymer composites. Adv Mater 22:1672

    Article  CAS  Google Scholar 

  • Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002) Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett 81:5123

    Article  CAS  Google Scholar 

  • Chen GH, Wu DJ, Weng WG, Yan WL (2001) Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J Appl Polym Sci 82:2506

    Article  CAS  Google Scholar 

  • Chen XM, Shen JW, Huang WY (2002) Novel electrically conductive polypropylene/graphene nanocomposites. J Mater Sci Lett 21:213

    Article  CAS  Google Scholar 

  • Chen G, Yang B, Guo S (2009) Ethylene‑acrylic acid copolymer induced electrical conductivity improvements and dynamic rheological behavior changes of polypropylene/carbon black composites. J Polym Sci B Polym Phys 47:1762

    Article  CAS  Google Scholar 

  • Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048

    Article  CAS  Google Scholar 

  • Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54

    Article  CAS  Google Scholar 

  • Fan Z, Zheng C, Wei T, Zhang Y, Luo G (2009) Effect of carbon black on electrical property of graphite nanoplatelets/epoxy resin composites. Polym Eng Sci 49:2041

    Article  CAS  Google Scholar 

  • Filippone G, Causa A, Filippone G, Causa A, de Luna MS, Sanguigno L, Acierno D (2014) Assembly of plate-like nanoparticles in immiscible polymer blends—effect of the presence of a preferred liquid‑liquid interface. Soft Matter 10:3183

    Article  CAS  Google Scholar 

  • Fisher ME, Essam J (1961) Some cluster size and percolation problems. J Math Phys 2:609

    Article  Google Scholar 

  • Foygel M, Morris R, Anez D, French S, Sobolev VL (2005) Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B 71:104201

    Article  Google Scholar 

  • Fuhrer MS, Nygård J, Shih L, Forero M, Yoon Y-G, Mazzoni MSC, Choi HJ, Ihm J, Louie SG, Zettl A, McEuen PL (2000) Crossed nanotube junctions. Science 288:494

    Article  CAS  Google Scholar 

  • Gelves GA, Lin B, Sundararaj U, Haber JA (2006) Low electrical percolation threshold of silver and copper nanowires in polystyrene composites. Adv Funct Mater 16:2423

    Article  CAS  Google Scholar 

  • Gkourmpis T, Svanberg C, Kaliappan SK, Schaffer W, Obadal M, Kandioller G, Tranchida D (2013) Improved electrical and flow properties of conductive polyolefin blends: modification of poly(ethylene vinyl acetate) copolymer/carbon black with ethylene‑propylene copolymer. Eur Polym J 49:1975

    Article  CAS  Google Scholar 

  • Gkourmpis T, Mercader GA, Haghi AK (eds) (2014) Nanoscience and computational chemistry: research progress. Apple Academic Press, Toronto, p 85

    Google Scholar 

  • Glowacki I, Jung J, Ulanski J, Matyjaszewski K, Möller M (eds) (2012) Polymer science: a comprehensive reference, vol 2. Elsevier, London, p 847

    Google Scholar 

  • Grimaldi C, Balberg I (2006) Tunneling and nonuniversality in continuum percolation systems. Phys Rev Lett 96:066602

    Article  CAS  Google Scholar 

  • Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, Bredas JL (1994) Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites. Macromolecules 27:1972

    Article  CAS  Google Scholar 

  • Gubbels F, Blacher S, Vanlathem E, Jerome R, Deltour R, Brouers F, Teyssie P (1995) Design of electrical composites: determining the role of the morphology on the electrical properties of carbon black filled polymer blends. Macromolecules 28:1559

    Article  CAS  Google Scholar 

  • Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem Mater 10:1227

    Article  CAS  Google Scholar 

  • Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344

    Article  CAS  Google Scholar 

  • He F, Fan J, Lau S, Chan LH (2011) Preparation, crystallization behavior, and dynamic mechanical property of nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplate. J Appl Polym Sci 119:1166

    Article  CAS  Google Scholar 

  • Hobbs SY, Dekkers MEJ, Watkins VH (1988) Effect of interfacial forces on polymer blend morphologies. Polymer 29:1598

    Article  CAS  Google Scholar 

  • Huang J, Mao C, Zhu Y, Jiang W, Yang X (2014) Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon 73:267

    Article  CAS  Google Scholar 

  • Hunt A, Ewing R (2009) Percolation theory for flow in porous media. Springer, Berlin

    Google Scholar 

  • Johner N, Grimaldi C, Balberg I, Ryser P (2008) Transport exponent in a three-dimensional continuum tunneling-percolation model. Phys Rev B 77:174204

    Article  Google Scholar 

  • Jordhamo GM, Manson JA, Sperling LH (1986) Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks. Polym Sci Eng Sci 26:517

    Article  CAS  Google Scholar 

  • Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317

    Article  CAS  Google Scholar 

  • Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515

    Article  CAS  Google Scholar 

  • Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574

    Article  Google Scholar 

  • Kostagiannakopoulou C, Maroutsos G, Sotiriadis G, Vavouliotis A, Kostopoulos V (2012). In: Third international conference on smart materials and nanotechnology in engineering, April 2012

    Google Scholar 

  • Kuhner G, Voll M (1993) Manufacture of carbon black. In: Donnet J-B, Bansal RC, Wang M-J (eds) Carbon black science and technology. Taylor & Francis, London, p 1

    Google Scholar 

  • Kyrylyuk AV, van der Schoot P (2008) Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc Nat Acad Sci USA 105:8221

    Article  CAS  Google Scholar 

  • Lacey D, Beattie HN, Mitchell GR, Pople JA (1998) Orientation effects in monodomain nematic liquid crystalline polysiloxane elastomers. J Mater Chem 8:53

    Article  CAS  Google Scholar 

  • Laird ED, Li CY (2013) Structure and morphology control in crystalline polymer‑carbon nanotube nanocomposites. Macromolecules 46:2877

    Article  CAS  Google Scholar 

  • Lewis TB, Nielsen LE (1970) Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci 14:1449

    Article  CAS  Google Scholar 

  • Li J, Kim J-K (2007) Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos Sci Technol 67:2114

    Article  CAS  Google Scholar 

  • Li CY, Li L, Cai W, Kodjie SL, Tenneti KK (2005) Nanohybrid shish-kebabs: periodically functionalized carbon nanotubes. Adv Mater 17:1198

    Article  CAS  Google Scholar 

  • Li J, Kim JK, Sham ML, Marom G (2007) Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos Sci Technol 67:296

    Article  CAS  Google Scholar 

  • Li L, Li B, Hood MA, Li CY (2009) Carbon nanotube induced polymer crystallization: the formation of nanohybrid shish‑kebabs. Polymer 50:953

    Article  CAS  Google Scholar 

  • Lux F (1993) Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J Mater Sci 28:285

    Article  CAS  Google Scholar 

  • Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, Wong YK, Tang BZ, Hong SH, Paik KW, Kim JK (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interfaces 1:1090

    Article  CAS  Google Scholar 

  • Matsen MW (2002) The standard Gaussian model for block copolymer melts. J Phys Condens Matter 14:R21

    Article  CAS  Google Scholar 

  • Mitchell GR, Davis FJ, Ashman A (1987) Structural studies of side-chain liquid crystal polymers and elastomers. Polymer 28:639

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194

    Article  CAS  Google Scholar 

  • Munson-McGee SH (1991) Estimation of the critical concentration in an anisotropic percolation network. Phys Rev B 43:3331

    Article  Google Scholar 

  • Mutiso RM, Winey KI, Matyjaszewski K, Möller M (eds) (2012) Polymer science: a comprehensive reference, vol 7. Elsevier, London, p 327

    Google Scholar 

  • Otten RHJ, van der Schoot P (2009) Continuum percolation of polydisperse nanofillers. Phys Rev Lett 103:225704

    Article  Google Scholar 

  • Oxfall H, Ariu G, Gkourmpis T, Rychwalski RW, Rigdhal M (2015) Effect of carbon black on electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate) composites. eXPRESS Polym Lett 9:66

    Article  Google Scholar 

  • Pang H, Zhong G, Xu J, Yan D, Ji X, Li Z, Chen C (2012) Non-isothermal crystallization of ethylene-vinyl acetate copolymer containing a high weight fraction of graphene nanosheets and carbon nanotubes. Chin J Polym Sci 30:879

    Article  CAS  Google Scholar 

  • Paul DR, Barlow JW (1980) Polymer blends (or alloys). J Macromol Sci Rev Macromol Chem C18:109

    Article  CAS  Google Scholar 

  • Penu C, Hu G-H, Fernandez A, Marchal P, Choplin L (2012) Rheological and electrical percolation thresholds of carbon nanotube/polymer nanocomposites. Polym Eng Sci 52:2173

    Article  CAS  Google Scholar 

  • Pike GE, Seager CH (1974) Percolation and conductivity: a computer study. I. Phys Rev B 10:1421

    Article  Google Scholar 

  • Pople JA, Mitchell GR (1997) WAXS studies of global molecular orientation induced in nematic liquid crystals by simple shear flow. Liquid Crystals 23:467

    Article  CAS  Google Scholar 

  • Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863

    Article  Google Scholar 

  • Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83:2928

    Article  CAS  Google Scholar 

  • Sahimi M (1994) Applications of percolation theory. Taylor & Francis, London

    Google Scholar 

  • Shante VKS, Kirckpatrick S (1971) An introduction to percolation theory. Adv Phys 30:325

    Article  Google Scholar 

  • Sherman RD, Middleman LM, Jacobs SM (1983) Electron transport processes in conductor-filled polymers. Polym Sci Eng 23:36

    Article  Google Scholar 

  • Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, Berlin

    Book  Google Scholar 

  • Stalmann G (2012) MSc Dissertation University of Marburg

    Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282

    Article  CAS  Google Scholar 

  • Stauffer D, Aharony A (1987) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  • Strumpler R, Glatz-Reichenbach J (1999) Conducting polymer composites. J Electroceram 3:329

    Article  CAS  Google Scholar 

  • Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265

    Article  CAS  Google Scholar 

  • Sun Y, Bao H-D, Guo Z-X, Yu J (2009) Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42:459

    Article  CAS  Google Scholar 

  • Tye S, Halperin BI (1989) Random resistor network with an exponentially wide distribution of bond conductances. Phys Rev B 39:877

    Article  Google Scholar 

  • Wang SF, Ogale AA (1993) Simulation of percolation behavior of anisotropic short-fiber composites with a continuum model and non-cubic control geometry. Compos Sci Technol 46:389

    Article  Google Scholar 

  • Wei T, Song L, Zheng C, Wang K, Yan J, Shao B, Fan Z-J (2010) The synergy of a three filler combination in the conductivity of epoxy composites. Mater Lett 64:2376

    Article  CAS  Google Scholar 

  • Weng WG, Chen GH, Wu DJ, Yan WL (2004) HDPE/expanded graphite electrically conducting composite. Compos Interface 11:131

    Article  CAS  Google Scholar 

  • White SI, DiDonna BA, Mu M, Lubensky TC, Winey KI (2009) Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys Rev B 79:024301

    Article  Google Scholar 

  • Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314

    Article  CAS  Google Scholar 

  • Winey KI, Kashiwagi T, Mu M (2007) Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull 32:348

    Article  CAS  Google Scholar 

  • Wu S, Polymer (1982) interface and adhesion, M. Dekker, London

    Google Scholar 

  • Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000

    Article  CAS  Google Scholar 

  • Xu JZ, Chen T, Wang Y, Tang H, Li Z-M, Hsiao BS (2011) Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 44:2808

    Article  CAS  Google Scholar 

  • Yan W, Lin RJT, Bhattacharyya D (2006) Particulate reinforced rotationally moulded polyethylene composites—mixing methods and mechanical properties. Compos Sci Technol 66:2080

    Article  CAS  Google Scholar 

  • Zhang QH, Fang F, Zhao X, Li YZ, Zhu MF, Chen DJ (2008) Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites. J Phys Chem B 112:12606

    Article  CAS  Google Scholar 

  • X. Zhao, Q. Zhang, D. Chen, P. Lu (2010). Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43, 2357

    Google Scholar 

  • Zheng W, Wong SC (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gkourmpis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gkourmpis, T. (2016). Electrically Conductive Polymer Nanocomposites. In: Mitchell, G., Tojeira, A. (eds) Controlling the Morphology of Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39322-3_8

Download citation

Publish with us

Policies and ethics