Skip to main content

Nanotechnology for the Detection and Diagnosis of Plant Pathogens

Part of the Sustainable Agriculture Reviews book series (SARV,volume 21)

Abstract

Rapid detection technologies with high sensitivity and selectivity for plant pathogens are essential to prevent disease spread with minimal loss to crop production and food quality assurance. Traditional laboratory techniques such as microscopic and cultural techniques are time-consuming and require complex sample handling. Immunological and molecular techniques are advanced but have some issues related to rapidity and signal strength. In this context, integration of immunological and molecular diagnostics with nanotechnology systems offers an alternative where all detection steps are done by a portable miniaturized device for rapid and accurate identification of plant pathogens. Further, nanomaterial synthesis by utilizing functionalized metal nanoparticles as a sensing component offer several desirable features required for pathogen detection. The sensitive nature of functionalized nanoparticles can be utilized to design phytopathogen detection devices with smart sensing capabilities for field use. This chapter provides an overview of the application of nanotechnology in the field of microbial diagnostics with special focus on plant pathogens.

Keywords

  • Agriculture
  • Detection
  • Diagnosis
  • Nanosensor
  • Nanotechnology
  • Pathogen
  • Quantum dots

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-39306-3_8
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-39306-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9

References

  • Actis P, Jejelowo O, Pourmand N (2010) Ultrasensitive mycotoxin detection by STING sensors. Biosens Bioelectron 26(2):333–337. doi:10.1016/j.bios.2010.08.016

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Alonso-Lomilloa MA, Domınguez-Renedoa O, Ferreira-Gonc L, Arcos-Martıneza MJ (2010) Sensitive enzyme-biosensor based on screen-printed electrodes for ochratoxin A. Biosens Bioelectron 25:1333–1337

    CrossRef  Google Scholar 

  • Alvarez AM (2004) Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annu Rev Plant Pathol 42:339–366

    CAS  Google Scholar 

  • Ansari AA, Kaushik A, Pratima R, Solanki Malhotra BD (2010) Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry 77(2):75–81

    CAS  CrossRef  PubMed  Google Scholar 

  • Ariffin SAB, Adam T, Hashim U, Faridah S, Zamri I, Uda MNA (2014) Plant diseases detection using nanowire as biosensor transducer. Adv Mater Res 832:113–117. doi:10.4028/www.scientific.net/AMR.832.113

    CrossRef  Google Scholar 

  • Baeummer A (2004) Nanosensors identify pathogens in food. Food Technol 58:5155

    Google Scholar 

  • Bakhori NM, Yusof NA, Abdullah AH, Hussein MZ (2013) Development of a fluorescence resonance energy transfer (FRET)-based DNA biosensor for detection of synthetic oligonucleotide of Ganoderma boninense. Biosensors 3(4):419–428

    CAS  CrossRef  PubMed  Google Scholar 

  • Bhattacharya S, Jang J, Yang L, Akin D, Bashir R (2007) Biomems and nanotechnology based approaches for rapid detection of biological entities. J Rapid Methods Autom Microbiol 15(1):132

    CrossRef  Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Sci Innov Discov 2:21–36

    Google Scholar 

  • Branton D et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chen G, Song F, Xiong X, Peng X (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res 52:11228–11245. doi:10.1021/ie303485n

    CAS  CrossRef  Google Scholar 

  • Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270

    CAS  CrossRef  PubMed  Google Scholar 

  • Conde J, Dias JT, Grazú V, Moros M et al (2014) Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2:48

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dameron CT, Reeser RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwaldm ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596–597

    CAS  CrossRef  Google Scholar 

  • De Boer SH, López MM (2012) New grower-friendly methods for plant pathogen monitoring. Ann Rev Phytopathol 50:197–218

    CrossRef  Google Scholar 

  • Dubas ST, Pimpan V (2008) Green synthesis of silver nanoparticles for ammonia sensing. Talanta 76(1):29–33

    CAS  CrossRef  PubMed  Google Scholar 

  • Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19(4):365–370

    CAS  CrossRef  PubMed  Google Scholar 

  • Edmundson MC, Capeness M, Horsfall L (2014) Exploring the potential of metallic nanoparticles within synthetic biology. New Biotechnol 31(6):572–578

    CAS  CrossRef  Google Scholar 

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99(2):175–185

    CAS  CrossRef  PubMed  Google Scholar 

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iran 20(3):1055–1058

    CAS  Google Scholar 

  • Fan C, Wang S, Hong JW, Bazan GC et al (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. PNAS USA 100(11):6297–6301

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 4:537–561. doi:10.3390/bios5030537

    CrossRef  Google Scholar 

  • Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139(15):3804–3810. doi:10.1039/c4an00384e

    CAS  CrossRef  PubMed  Google Scholar 

  • Firrao G, Moretti M, Ruiz-Rosquete M, Gobbi E, Locci R (2005) Nanobiotransducer for detecting flavescence doree phytoplasma. J Plant Pathol 87(2):101–107

    CAS  Google Scholar 

  • Garcia F, Westfahl H, Schoenmaker J, Carvalho EJ et al (2010) Tailoring magnetic vortices in nanostructures. Appl Phys Lett 97:022501

    CrossRef  Google Scholar 

  • Goluch ED, Nam JM, Georganopoulou DG, Chiesl TN et al (2006) A biobarcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6(10):1293–1299

    CAS  CrossRef  PubMed  Google Scholar 

  • González-Melendi P, Fernandez-Pacheco R, Coronado MJ, Corredor E et al (2007) Nanoparticles as smart treatment delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hashimoto Y, Nakamura H, Koichi AK, Karube I (2008) A new diagnostic method for soil-borne disease using a microbial biosensor. Microbes Environ 23(1):35–39

    CrossRef  PubMed  Google Scholar 

  • Hayden EC (2015) Pint-sized DNA sequencer impresses first users. Nature 521:15–16

    CrossRef  Google Scholar 

  • Hervás M, López MA, Escarpa A (2011) Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst 136(10):2131–2138

    CrossRef  PubMed  Google Scholar 

  • Hu J, Wang L, Li F, Han YL, Lin M, Lu TJ, Xu F (2013) Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip 13:4352–4357. doi:10.1039/C3LC50672J

    CAS  CrossRef  PubMed  Google Scholar 

  • Jain K (2003) Nanodiagnostics: application of nanotechnology (NT) in molecular diagnostics. Expert Rev Mol Diagn 3(2):153–161

    CAS  CrossRef  PubMed  Google Scholar 

  • James C (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5:3497–3502

    CrossRef  Google Scholar 

  • Jaynes WF, Zartman RE, Hudnall WH (2007) Aflatoxin B1 adsorption by clays from water and corn meal. Appl Clay Sci 36(13):197–205

    CAS  CrossRef  Google Scholar 

  • Jeong J, Ju H, Noh J (2014) A review of detection methods for the plant viruses. Res Plant Dis 20(3):173–181. doi:10.5423/RPD.2014.20.3.173

    CrossRef  Google Scholar 

  • Kashyap PL, Kaur S, Sanghera GS, Kang SS, Pannu PPS (2011) Novel methods for quarantine detection of Karnal bunt (Tilletia indica) of wheat. Elixir Agric 31:1873–1876

    Google Scholar 

  • Kashyap PL, Kumar S, Gurjar MS, Singh A et al (2013a) Phytopathogenomics in plant disease management: a paradigm shift. In: Prasad D, Ray DP (eds) Biotechnological approaches in crop protection. Biotech Book Publishers, New Delhi, pp 241–262

    Google Scholar 

  • Kashyap PL, Kumar S, Singh R, Kumar A et al (2013) LAMP for detection of plant pathogens. AGROBIOS pp 76–77

    Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013b) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29(2):191–207

    CAS  CrossRef  PubMed  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    CAS  CrossRef  PubMed  Google Scholar 

  • Kaushik A, Solanki PR, Ansari AA, Ahmad S et al (2009) A Nanostructured cerium oxide filmbased immunosensor for mycotoxin detection. Nanotechnology 20: Article ID: 055105

    Google Scholar 

  • Kaushik A, Arya SK, Vasudev A, Bhansali S (2013) Recent advances in detection of ochratoxin-A. Open J Appl Biosens 2(1):1–11

    CrossRef  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231

    CrossRef  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaym MA et al (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785. doi:10.1080/13102818.2014.960739

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Knudsen BR, Jepsen ML, Ho Y-P (2013) Quantum dot-based nanosensors for diagnosis via enzyme activity measurement. Expert Rev Mol Diagn 13(4):367–375. doi:10.1586/erm.13.17

    CAS  CrossRef  PubMed  Google Scholar 

  • Kumar S, Kashyap PL (2013) Expanding horizons of precision farming driven crop protection. In: Ram T, Lohan SK, Singh R, Singh P (eds) Precision farming: a new approach. Daya Publications, New Delhi, pp 192–212

    Google Scholar 

  • Kumar S, Tao C, Chien M, Hellner B, Balijepalli A, Robertson JWF et al (2012) PEG-labeled nucleotides and Nanopore detection for single molecule DNA sequencing by synthesis. Sci Rep 2:684. doi:10.1038/srep00684

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Singh R, Kashyap PL, Srivastava AK (2013) Rapid detection and quantification of Alternaria solani in tomato. Sci Hortic 151:184–189. doi:10.1016/j.scienta.2012.12.026

    CAS  CrossRef  Google Scholar 

  • Lattanzio VMT, Nivarlet N, Lippolis V, Gatta SD et al (2012) Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta 718:99–108

    CAS  CrossRef  PubMed  Google Scholar 

  • Lin H-Y, Huang C-H, Lu S-H, Kuo I-T, Chau L-K (2014) Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron 51:371–378

    CAS  CrossRef  PubMed  Google Scholar 

  • López MM, Bertolini E, Olmos A, Caruso P et al (2003) Innovative tools for detection of plant pathogenic viruses and bacteria. Int Microbiol 6:233–243

    CrossRef  PubMed  Google Scholar 

  • Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW et al (2010) Sensitive giant magnetoresistive based immunoassay for multiplex mycotoxin detection. Biosens Bioelectron 25(7):1635–1639

    CAS  CrossRef  PubMed  Google Scholar 

  • Malhotra BD, Srivastava S, Ali MA, Singh C et al (2014) Nanomaterial-based biosensors for food toxin detection. Appl Biochem Biotechnol 174:880–896

    CAS  CrossRef  PubMed  Google Scholar 

  • Mann SK, Kashyap PL, Sanghera GS, Singh G, Singh S (2008) RNA interference: an eco-friendly tool for plant disease management. Transgenic Plant J 2(2):110–126

    Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S et al (2014) Advanced methods of plant disease detection: a review. Agron Sustain Dev 35(1):1–25. doi:10.1007/s13593-014-0246-1

    CrossRef  Google Scholar 

  • Mccandless L (2005) Nanotechnology offers new insights into plant pathology. College of Agriculture and Life Sciences News, Cornell University, Ithaca, pp 17–18

    Google Scholar 

  • McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59:129–142

    CAS  CrossRef  PubMed  Google Scholar 

  • Meng Y, Li Y, Galvani CD, Hao G et al (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187(16):5560–5567

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Nam JM, Stoeva SI, Mirkin CA (2004) Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 126(19):5932–5933

    CAS  CrossRef  PubMed  Google Scholar 

  • Nie L (2013) Biomedical nanotechnology for optical molecular imaging, diagnostics, and therapeutics. JSM Nanotechnol Nanomed 1:1–2

    Google Scholar 

  • Nezhad AS (2014) Future of portable devices for plant pathogen diagnosis. Lab Chip 14:2887–2904

    CAS  CrossRef  PubMed  Google Scholar 

  • Pal S, Ying W, Alocilja EC, Downes FP (2008) Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosyst Eng 99(4):461–468

    CrossRef  Google Scholar 

  • Pan Z, Yang X-B, Li X, Andrade D et al (2010) Prediction of plant diseases through modeling and monitoring airborne pathogen dispersal. CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources, 5, PAVSNNRD-09-00177R1

    Google Scholar 

  • Paniel N, Radoi A, Marty JL (2010) Development of an electrochemical biosensor for the detection of aflatoxin M1 in milk. Sensors 10(10):9439–9448

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Panini NV, Bertolino FA, Salinas E, Messina GA, Raba J (2010) Zearalenone determination in corn silage samples using an immunosensor in a continuous-flow/stopped-flow systems. Biochem Eng J 51(12):713

    Google Scholar 

  • Pimentel D (2009) Invasive plants: their role in species extinctions and economic losses to agriculture in the USA. In: Management of invasive weeds, invading nature – Springer Series in invasion ecology. Springer, Dordrecht, pp 1–7

    Google Scholar 

  • Poonam P, Deo N (2008) Current correlation functions for chemical sensors based on DNA decorated carbon nanotube. N Sensors Actuators B Chem 135(1):327–335

    CAS  CrossRef  Google Scholar 

  • Prieto-Simon B, Noguer T, Campas M (2007) Emerging biotools for assessment of mycotoxins in the past decade. Trends Anal Chem 26:689–702

    CAS  CrossRef  Google Scholar 

  • Puzyr AP, Burov AE, Bondar VS, Trusov YN et al (2010) Neutralization of aflatoxin b1 by ozone treatment and adsorption by nanodiamonds. Nanotechnol Russian 5:137–141

    CrossRef  Google Scholar 

  • Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR et al (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots FRET-based biosensor. J Plant Pathol 94(3):525–534

    Google Scholar 

  • Radoi A, Targa M, Prieto-Simon B, Marty JL (2008) Enzyme linked-nanoparticles for aflatoxin M1 detection. Talanta 77(1):138–143

    CAS  CrossRef  PubMed  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    CAS  CrossRef  PubMed  Google Scholar 

  • Rispail N, Matteis LD, Santos R, Miguel AS et al (2014) Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl Mater Interfaces 6(12):9100–9110

    CAS  CrossRef  PubMed  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    CAS  CrossRef  PubMed  Google Scholar 

  • Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A et al (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34(4):507–515

    CrossRef  Google Scholar 

  • Sankaran S, MishraA ER, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13. doi:10.1016/j.compag.2010.02.007

    CrossRef  Google Scholar 

  • Savaliya R, Shah D, Singh R, Kumar A, Shanker R, Dhawan A, Singh S (2015) Nanotechnology in disease diagnostic techniques. Curr Drug Metab 16(8):645–661. doi:10.2174/1389200216666150625121546

    CAS  CrossRef  PubMed  Google Scholar 

  • Schwenkbier L, Pollok S, König S, Urban M et al (2015) Towards on-site testing of Phytophthora species. Anal Methods 7:211–217

    CAS  CrossRef  Google Scholar 

  • Sertova NM (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. J Cent Eur Agric 16:117–130

    CrossRef  Google Scholar 

  • Servin A, Elmer W, Mukherjee A, Torre-Roche RD et al (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92

    CrossRef  Google Scholar 

  • Sharma A, Matharu Z, Sumana G, Solanki PR et al (2010) Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films 519(3):1213–1218

    CAS  CrossRef  Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immune-dipstick test. Thin Solid Films 519:1156–1159

    CAS  CrossRef  Google Scholar 

  • Singh R, Kumar S, Kashyap PL, Srivastava AK, Mishra S et al (2014) Identification and characterization of microsatellite from Alternaria brassicicola to assess cross-species transferability and utility as a diagnostic marker. Mol Biotechnol 56:1049–1059

    CAS  CrossRef  PubMed  Google Scholar 

  • Srinivasan B, Tung S (2015) Development and applications of portable biosensors. J Lab Autom 20(4):365–389

    Google Scholar 

  • Stanisavljevic M, Son K, Vaculovicova M, Kizeka R, Adama V (2015) Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron 74(15):562–574

    CAS  CrossRef  PubMed  Google Scholar 

  • Sundelin T, Collinge DB, Lübeck M (2009) A cultivation independent, PCR-based protocol for the direct identification of plant pathogens in infected plant material. Eur J Plant Pathol 123(4):473–476

    CAS  CrossRef  Google Scholar 

  • Szeghalmi A, Kaminskyj S, Rösch P, Popp J et al (2007) Time fluctuations and imaging in the SERS spectra of fungal hypha grown on nanostructured substrates. J Phys Chem B 111:12916–12924

    CAS  CrossRef  PubMed  Google Scholar 

  • Thaxton CS, Georganopoulou DG, Mirkin CA (2006) Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 363(1–2):120–126

    CAS  CrossRef  PubMed  Google Scholar 

  • Thind TS (2012) Fungicides in crop health security. Indian Phytopathol 65(2):109–115

    CAS  Google Scholar 

  • Tothill IE (2011) Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin J 4(4):361–374

    CAS  CrossRef  Google Scholar 

  • Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18

    CAS  CrossRef  PubMed  Google Scholar 

  • Wang Z, Wei F, Liu SY, Xu Q, Huang JY et al (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80:1277–1281

    CAS  CrossRef  PubMed  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N et al (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120. doi:10.1007/s10529-015-1901-6

    CAS  CrossRef  PubMed  Google Scholar 

  • Yalcin B, Otles S (2010) Nanobiosensor and food pathogen interaction mechanisms. Electron J Environ Agric Food Chem 9:1257–1273

    CAS  Google Scholar 

  • Yang H, Li H, Jiang X (2008) Detection of food borne pathogens using bioconjugated nanomaterials. Microfluid Nanofluid 5(5):571–583

    CAS  CrossRef  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC et al (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Multi-Funct Mater Struct II (1–2) 79–82:513–516

    Google Scholar 

  • Zhang J, Chiodini R, Badr A, Zhang GF (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38(3):95–109. doi:10.1016/j.jgg.2011.02.003

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zhao M-X, Zeng E-Z (2015) Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res Lett 10:171. doi:10.1186/s11671-015-0873-8

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Indian Council of Agriculture Research (ICAR) by a network project ‘Application of Microorganisms in Agriculture and Allied Sectors’ (AMAAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Lal Kashyap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kashyap, P.L. et al. (2016). Nanotechnology for the Detection and Diagnosis of Plant Pathogens. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 2. Sustainable Agriculture Reviews, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-39306-3_8

Download citation