Two Systems, Two Stances: A Novel Theoretical Framework for Model-Based Learning in Digital Games

  • Mario M. Martinez-GarzaEmail author
  • Douglas B. Clark
Part of the Advances in Game-Based Learning book series (AGBL)


Recent reviews of quantitative research suggest that some but not all digital games add value when used as pedagogical tools. A more sophisticated cognitive theory of learning is required to guide the advance of educational games through improvements in design, scaffolding, and assessments. This chapter extends and improves existing mental model-based hypotheses about learning in games, particularly in terms of science learning and seeks to conceptualize simulation and game-based learning within a more general two-system theory of human cognition.


Educational games Theory of learning Mental models Two-system theory of cognition 


  1. Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem situations. Psychological Review, 94(2), 192–210.CrossRefGoogle Scholar
  2. Anderson, J., & Barnett, M. (2011). Using video games to support pre-service elementary teachers learning of basic physics principles. Journal of Science Education and Technology, 20(4), 347–362.CrossRefGoogle Scholar
  3. Apostel, L. (1961). Towards the formal study of models in the non-formal sciences. In The concept and the role of the model in mathematics and natural and social sciences (pp. 1–37). Dordrecht: Springer. Retrieved from
  4. Barab, S. A., Gresalfi, M. S., & Ingram-Goble, A. (2010). Transformational play: Using games to position person, content, and context. Educational Researcher, 39(7), 525–536.CrossRefGoogle Scholar
  5. Bartle, R. (1996). Hearts, clubs, diamonds, spades: Players who suit MUDs. Journal of MUD Research, 1(1), 19.Google Scholar
  6. Bekebrede, G., & Mayer, I. (2006). Build your seaport in a game and learn about complex systems. Journal of Design Research, 5(2), 273–298. doi: 10.1504/JDR.2006.011366.CrossRefGoogle Scholar
  7. Chaiken, S. (1980). Heuristic versus systematic information processing and the use of source versus message cues in persuasion. Journal of Personality and Social Psychology, 39(5), 752–766. doi: 10.1037/0022-3514.39.5.752.CrossRefGoogle Scholar
  8. Chater, N., & Oaksford, M. (1998). Rational models of cognition. Oxford: Oxford University Press.Google Scholar
  9. Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152.CrossRefGoogle Scholar
  10. Chi, M. T., Glaser, R., & Rees, E. (1981). Expertise in problem solving. Pittsburgh, PA: Learning Research and Development Center, University of Pittsburgh.Google Scholar
  11. Clark, D. B., & Jorde, D. (2004). Helping students revise disruptive experientially supported ideas about thermodynamics: Computer visualizations and tactile models. Journal of Research in Science Teaching, 41(1), 1–23.CrossRefGoogle Scholar
  12. Clark, R. C., & Mayer, R. E. (2011). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning (3rd rev. ed.). Chichester, UK: Jossey Bass Wiley.Google Scholar
  13. Clark, D., Nelson, B., Sengupta, P., & D’Angelo, C. (2009, October). Rethinking science learning through digital games and simulations: Genres, examples, and evidence. In Learning science: Computer games, simulations, and education workshop sponsored by the National Academy of Sciences, Washington, DC.Google Scholar
  14. Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041–1053.CrossRefGoogle Scholar
  15. de Kleer, J., & Brown, J. S. (1980). Mental models of physical mechanisms and their acquisition. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 285–309). Hillsdale, NJ: Erlbaum.Google Scholar
  16. Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum Publishing Company.CrossRefGoogle Scholar
  17. Detterman, D. (1993). The case for prosecution: Transfer as an epiphenomenon. In D. Detterman & R. Sternberg (Eds.), Transfer on trial: Intelligence, cognition and instruction (pp. 1–24). Norwood, NJ: Alex.Google Scholar
  18. diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225.CrossRefGoogle Scholar
  19. Doyle, J. K., & Ford, D. N. (1998). Mental model concepts for system dynamics research. System Dynamics Review, 14(1), 3–29.CrossRefGoogle Scholar
  20. Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85(5), 554–567.CrossRefGoogle Scholar
  21. Epstein, S. (1994). Integration of the cognitive and the psychodynamic unconscious. American Psychologist, 49(8), 709–724. doi: 10.1037/0003-066X.49.8.709.CrossRefGoogle Scholar
  22. Evans, J. S. B. T. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7(10), 454–459. doi: 10.1016/j.tics.2003.08.012.CrossRefGoogle Scholar
  23. Evans, J. S. B. T. (2006). The heuristic-analytic theory of reasoning: Extension and evaluation. Psychonomic Bulletin & Review, 13(3), 378–395. doi: 10.3758/BF03193858.CrossRefGoogle Scholar
  24. Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59(1), 255–278. doi: 10.1146/annurev.psych.59.103006.093629.CrossRefGoogle Scholar
  25. Evans, J. S. B. T., & Stanovich, K. E. (2013). Dual-process theories of higher cognition advancing the debate. Perspectives on Psychological Science, 8(3), 223–241. doi: 10.1177/1745691612460685.CrossRefGoogle Scholar
  26. Fiske, S. T., & Taylor, S. E. (1991). Social cognition (2nd ed.). New York, NY: McGraw-Hill.Google Scholar
  27. Gee, J. P. (2003). What Video Games Have to Teach Us about Learning and Literacy. New York: Palgrave Macmillan.Google Scholar
  28. Gee, J. P. (2007). What video games have to teach us about learning and literacy. Second edition: Revised and updated edition (2nd ed.). New York, NY: Palgrave Macmillan.Google Scholar
  29. Gee, J. P. (2008). Learning and games. In K. Salen (Ed.), The ecology of games: Connecting youth, games and learning (pp. 21–40). Cambridge, MA: MIT Press.Google Scholar
  30. Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: models of bounded rationality. Psychological Review, 103(4), 650.CrossRefGoogle Scholar
  31. Gigerenzer, G., Hoffrage, U., & Kleinbölting, H. (1991). Probabilistic mental models: A Brunswikian theory of confidence. Psychological Review, 98, 506–528.CrossRefGoogle Scholar
  32. Gigerenzer, G., & Selten, R. (Eds.). (2001). Bounded rationality: The adaptive toolbox. Cambridge, MA: MIT Press.Google Scholar
  33. Gilbert, J. K., & Boulter, C. (Eds.). (2012). Developing models in science education. Berlin: Springer Science & Business Media.Google Scholar
  34. Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning physics. The Journal of the Learning Sciences, 12(1), 53–90.CrossRefGoogle Scholar
  35. Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89–120).Google Scholar
  36. Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108, 356–388.CrossRefGoogle Scholar
  37. Holbert, N. R., & Wilensky, U. (2014). Constructible authentic representations: Designing video games that enable players to utilize knowledge developed in-game to reason about science. Technology, Knowledge and Learning, 19(1–2), 53–79.CrossRefGoogle Scholar
  38. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness (Vol. 6). Cambridge, MA: Harvard University Press.Google Scholar
  39. Jones, M. G., Minogue, J., Tretter, T. R., Negishi, A., & Taylor, R. (2006). Haptic augmentation of science instruction: Does touch matter? Science Education, 90(1), 111–123.CrossRefGoogle Scholar
  40. Kahneman, D. (2003). Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review, 93(5), 1449–1475.CrossRefGoogle Scholar
  41. Kebritchi, M. (2010). Factors affecting teachers’ adoption of educational computer games: A case study. British Journal of Educational Technology, 41(2), 256–270.Google Scholar
  42. Lehrer, R., & Schauble, L. (2005). Cultivating model-based reasoning in science education. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 371–388). Cambridge, UK: Cambridge University Press. doi: 10.1017/CBO9780511816833.023.CrossRefGoogle Scholar
  43. Li, Q. (2010). Digital game building: Learning in a participatory culture. Educational Research, 52(4), 427–443.CrossRefGoogle Scholar
  44. Marino, M. T., Basham, J. D., & Beecher, C. C. (2011). Using video games as an alternative science assessment for students with disabilities and at-risk learners. Science Scope, 34(5), 36–41.Google Scholar
  45. Martinez-Garza, M. M. (2015). Examining epistemic practices of the community of players of Dwarf Fortress: “For !!SCIENCE!!”. International Journal of Gaming and Computer-Mediated Simulations (IJGCMS), 7(2), 46–67.CrossRefGoogle Scholar
  46. Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  47. Mayer, R. E., & Wittrock, M. C. (1996). Problem-solving transfer. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 47–62). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  48. McNamara, D. S., & Shapiro, A. M. (2005). Multimedia and hypermedia solutions for promoting metacognitive engagement, coherence, and learning. Journal of Educational Computing Research, 33(1), 1–29.CrossRefGoogle Scholar
  49. Moreno, R., & Mayer, R. E. (2000). Engaging students in active learning: The case for personalized multimedia messages. Journal of Educational Psychology, 92(4), 724–733.CrossRefGoogle Scholar
  50. Moreno, R., & Mayer, R. E. (2005). Role of guidance, reflection, and interactivity in an agent-based multimedia game. Journal of Educational Psychology, 97(1), 117–128.CrossRefGoogle Scholar
  51. Neches, R., Langley, P., & Klahr, D. (1987). Learning, development, and production systems. In D. Klahr, P. Langley, & R. Neches (Eds.), Production system models of learning and development (pp. 1–53). Cambridge, MA: The MIT Press.Google Scholar
  52. Nilsson, E. M., & Jakobsson, A. (2011). Simulated sustainable societies: Students’ reflections on creating future cities in computer games. Journal of Science Education and Technology, 20(1), 33–50.CrossRefGoogle Scholar
  53. Nisbett, R. E., Peng, K., Choi, I., & Norenzayan, A. (2001). Culture and systems of thought: Holistic versus analytic cognition. Psychological Review, 108(2), 291–310. doi: 10.1037/0033-295X.108.2.291.CrossRefGoogle Scholar
  54. Perkins, K., Adams, W., Dubson, M., Finkelstein, N., Reid, S., Wieman, C., et al. (2006). PhET: Interactive simulations for teaching and learning physics. The Physics Teacher, 44(1), 18–23.CrossRefGoogle Scholar
  55. Rosenbaum, E., Klopfer, E., & Perry, J. (2007). On location learning: Authentic applied science with networked augmented realities. Journal of Science Education and Technology, 16(1), 31–45. doi: 10.1007/s10956-006-9036-0.CrossRefGoogle Scholar
  56. Rouse, W. B., & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological Bulletin, 100(3), 349–363. doi: 10.1037/0033-2909.100.3.349.CrossRefGoogle Scholar
  57. Ryan, R. M., Rigby, C. S., & Przybylski, A. (2006). The motivational pull of video games: A self-determination theory approach. Motivation and Emotion, 30(4), 344–360.CrossRefGoogle Scholar
  58. Schrader, P. G., & McCreery, M. (2008). The acquisition of skill and expertise in massively multiplayer online games. Educational Technology Research and Development, 56(5–6), 557–574.CrossRefGoogle Scholar
  59. Schwartz, D. L., & Black, J. B. (1996). Shuttling between depictive models and abstract rules: Induction and fallback. Cognitive Science, 20(4), 457–497.CrossRefGoogle Scholar
  60. Shaffer, D. W., Squire, K. R., Halverson, R., & Gee, J. P. (2005). Video games and the future of learning. Phi Delta Kappan, 87(2), 104–111.CrossRefGoogle Scholar
  61. Sharritt, M. J. (2008). Forms of learning in collaborative video game play. Research and Practice in Technology Enhanced Learning, 3(2), 97–138.CrossRefGoogle Scholar
  62. Sherry, J. L., Lucas, K., Greenberg, B. S., & Lachlan, K. (2006). Video game uses and gratifications as predictors of use and game preference. In P. Vorderer & J. Bryant (Eds.), Playing video games: Motives, responses, and consequences (pp. 213–224). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  63. Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129–138. doi: 10.1037/h0042769.CrossRefGoogle Scholar
  64. Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin, 119(1), 3–22. doi: 10.1037/0033-2909.119.1.3.CrossRefGoogle Scholar
  65. Smith, E. E., Langston, C., & Nisbett, R. E. (1992). The case for rules in reasoning. Cognitive Science, 16(1), 1–40. doi: 10.1207/s15516709cog1601_1.CrossRefGoogle Scholar
  66. Squire, K. D., & Jenkins, H. (2003). Harnessing the power of games in education. Insight, 3(1), 5–33.Google Scholar
  67. Stanovich, K. E. (1999). Who is rational? Studies of individual differences in reasoning. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  68. Stenning, K., & Van Lambalgen, M. (2008). Human reasoning and cognitive science. Cambridge, MA: MIT Press.Google Scholar
  69. Taylor, M. J., Pountney, D. C., & Baskett, M. (2008). Using animation to support the teaching of computer game development techniques. Computers & Education, 50(4), 1258–1268. doi: 10.1016/j.compedu.2006.12.006.CrossRefGoogle Scholar
  70. Veldhuyzen, W., & Stassen, H. G. (1977). The internal model concept: An application to modeling human control of large ships. Human Factors: The Journal of the Human Factors and Ergonomics Society, 19(4), 367–380.Google Scholar
  71. Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive science, 18(1), 123–183.Google Scholar
  72. Yee, N. (2006). Motivations for play in online games. CyberPsychology & Behavior, 9(6), 772–775.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Teaching and LearningPeabody College VanderBilt UniversityNashvilleUSA

Personalised recommendations