Advertisement

Towards a Game-Based Learning Instructional Design Model Focusing on Integration

  • Sylke VandercruysseEmail author
  • Jan Elen
Chapter
Part of the Advances in Game-Based Learning book series (AGBL)

Abstract

This chapter focuses on a new instructional design model for game-based learning (GBL) that pinpoints the elements that are to be considered when designing learning environments in which GBL occurs. One key element of the model is discussed more in detail, being the integration of instructional elements in a GBLE. Based on different studies, the chapter concludes with emphasizing the importance of the design of the GBLE in the GBL processes. More specifically, the interplay between the instructional elements and the game elements is an important aspect in the GBL-process. Several decisions have to be made when designing a GBLE, and these decisions are of influence on GBL outcomes.

Keywords

Instructional design model Game-based learning Integration of instructional elements 

References

  1. Aldrich, C. (2005). Learning by doing: A comprehensive guide to simulations, computer games, and pedagogy in e-learning and other educational experiences. San Francisco, CA: Pfeiffer.Google Scholar
  2. Aleven, V., Koedinger, K., Corbett, A. T., & Perfetti, C. (2015, August). The knowledge-learning-instruction (KLI) framework: Helping to bring science into practice. In B. de Koning (Chair), Invited SIG Symposium: Instructional design models—Do they still exist? Symposium conducted at the 16th Biennial EARLI Conference for Research on Learning and Instruction, Limassol, Cyprus.Google Scholar
  3. Baker, E. L., & Delacruz, G. C. (2008). A framework for the assessment of learning games. In H. F. O’Neil & R. S. Perez (Eds.), Computer games and team and individual learning (pp. 21–37). Oxford, UK: Elsevier.Google Scholar
  4. Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65–79. doi: 10.1016/j.compedu.2013.08.003.CrossRefGoogle Scholar
  5. Broza, O., & Barzilai, S. (2011). When the mathematics of life meets school mathematics: Playing and learning on the “my money” website. In Y. Eshet-Alkalai, A. Caspi, S. Eden, N. Geri & Y. Yair (Eds.), Learning in the technological era: Proceedings of the Sixth Chais Conference on Instructional Technologies Research 2011 (pp. 92–100). Ra’anana, Israel: The Open University of Israel.Google Scholar
  6. Charsky, D., & Ressler, W. (2011). “Games are made for fun”: Lessons on the effects of concept maps in the classroom use of computer games. Computers & Education, 56, 604–615. doi: 10.1016/j.compedu.2010.10.001.CrossRefGoogle Scholar
  7. Cheng, H. N. H., Wu, W. M. C., Liao, C. C. Y., & Chan, T.-W. (2009). Equal opportunities tactic: Redesigning and applying competition games in classrooms. Computers & Education, 53, 866–876. doi: 10.1016/j.compedu.2009.05.006.CrossRefGoogle Scholar
  8. Clark, D. B., Nelson, B. C., Chang, H.-Y., Martinez-Garza, M., Slack, K., & D’Angelo, C. M. (2011). Exploring Newtonian mechanics in a conceptually-integrated digital game: Comparison of learning and affective outcomes for students in Taiwan and the United States. Computers & Education, 57, 2178–2195. doi: 10.1016/j.compedu.2011.05.007.CrossRefGoogle Scholar
  9. Cobb, P., & McClain, K. (2005). Guiding inquiry-based math learning. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 171–186). Cambridge, UK: Cambridge University Press. doi: 10.1017/CBO9780511816833.012.CrossRefGoogle Scholar
  10. Cornillie, F. (2014). Adventures in red ink. Effectiveness of corrective feedback in digital game-based language learning. Unpublished doctoral dissertation, Katholieke Universiteit Leuven, Belgium.Google Scholar
  11. Darabi, A. A., Nelson, D. W., & Seel, N. M. (2009). Progression of mental models throughout the phases of a computer-based instructional simulation: Supportive information, practice, and performance. Computers in Human Behavior, 25, 723–730. doi: 10.1016/j.chb.2009.01.009.CrossRefGoogle Scholar
  12. de Freitas, S., & Maharg, P. (2014). Series editors introduction. In N. Whitton (Ed.), Digital games and learning: Research and theory (pp. xiii–xiv). New York: Routledge.Google Scholar
  13. Echeverria, A., Barrios, E., Nussbaum, M., Améstica, M., & Leclerc, S. (2012). The atomic intrinsic integration approach: A structured methodology for the design of games for the conceptual understanding of physics. Computers & Education, 59, 806–816. doi: 10.1016/j.compedu.2012.03.025.CrossRefGoogle Scholar
  14. Erhel, S., & Jamet, E. (2013). Digital game-based learning: Impact of instructions and feedback on motivation and learning effectiveness. Computers & Education, 67, 156–167. doi: 10.1016/j.compedu.2013.02.019.CrossRefGoogle Scholar
  15. Felicia, P. (2011). How can digital games be used to teach the school curriculum. Retrieved from http://linked.eun.org/c/document_library/get_file?p_l_id=22779&folderId=24664&name=DLFE-783.pdf
  16. Gagné, R. M., Briggs, L. J., & Wager, W. W. (1992). Principles of instructional design (4th ed.). Forth Worth, TX: Harcourt Brace Jovanovich College Publishers.Google Scholar
  17. Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33, 441–467. doi: 10.1177/1046878102238607.CrossRefGoogle Scholar
  18. Gee, J. P. (2011). Reflections on empirical evidence on games and learning. In S. Tobias & J. D. Fletcher (Eds.), Computer games and instruction (pp. 223–232). Charlotte, NC: Information Age Publishing.Google Scholar
  19. Habgood, M. P. J., & Ainsworth, S. E. (2011). Motivating children to learn effectively: Exploring the value of intrinsic integration in educational games. Journal of the Learning Sciences, 20, 169–206. doi: 10.1080/10508406.2010.508029.CrossRefGoogle Scholar
  20. Habgood, M. P. J., Ainsworth, S. E., & Benford, S. (2005). Endogenous fantasy and learning in digital games. Simulation & Gaming, 36, 483–498. doi: 10.1177/1046878105282276.CrossRefGoogle Scholar
  21. Hays, R. T. (2005). The effectiveness of instructional games: A literature review and discussion (Technical Report No. 2005-004). Orlando, FL: Naval Air Warfare Center Training Systems Division.Google Scholar
  22. Henderson, L., Klemes, J., & Eshet, Y. (2000). Just playing a game? Educational simulation software and cognitive outcomes. Journal of Educational Computing Research, 22, 105–129. doi: 10.2190/EPJT-AHYQ-1LAJ-U8WK.CrossRefGoogle Scholar
  23. Holbert, N., & Wilensky, U. (2012). Representational congruence: Connecting video game experiences to the design and use of formal representations. Proceedings of Constructionism 2012.Google Scholar
  24. Honey, M. A., & Hilton, M. (Eds.). (2011). Learning science through computer games and simulations. Washington, DC: The National Academies Press.Google Scholar
  25. Inspectie van het Onderwijs. (2009). De staat van het onderwijs. Onderwijsverslag 2007/2008 [The state of education. Education report (2007/2008)]. De Meern: Inspectie van het Onderwijs.Google Scholar
  26. Johnson, C. I., & Mayer, R. E. (2010). Applying the self-explanation principle to multimedia learning in a computer-based game-like environment. Computers in Human Behavior, 26, 1246–1252. doi: 10.1016/j.chb.2010.03.025.CrossRefGoogle Scholar
  27. Jonassen, D. H., Campbell, J. P., & Davidson, M. E. (1994). Learning with media: Restructuring the debate. Educational Technology Research & Development, 42, 31–39. doi: 10.1007/BF02299089.CrossRefGoogle Scholar
  28. Ke, F. (2008). Computer games application within alternative classroom goal structures: Cognitive, metacognitive, and affective evaluation. Educational Technology Research and Development, 56, 539–556. doi: 10.1007/s11423-008-9086-5.CrossRefGoogle Scholar
  29. Ke, F. (2009). A qualitative meta-analysis of computer games as learning tools. In R. E. Ferdig (Ed.), Handbook of research on effective electronic gaming in education (pp. 1–32). Hershey, PA: IGI Global. doi: 10.4018/978-1-59904-808-6.ch001.CrossRefGoogle Scholar
  30. Ke, F., & Grabowski, B. (2007). Gameplaying for maths learning: Cooperative or not? British Journal of Educational Technology, 38, 249–259. doi: 10.1111/j.1467-8535.2006.00593.x.CrossRefGoogle Scholar
  31. Lee, J. (1999). Effectiveness of computer-based instructional simulation: A meta analysis. International Journal of Instructional Media, 26(1), 71–85.Google Scholar
  32. Leemkuil, H., & de Jong, T. (2011). Instructional support in games. In S. Tobias & J. D. Fletcher (Eds.), Computer games and instruction (pp. 353–369). Charlotte, NC: Information Age Publishing Inc.Google Scholar
  33. Liu, Y., & Rojewski, J. W. (2013). Effects of instructional support in game-based learning: An analysis of educational games from design and application perspectives. In R. McBride & M. Searson (Eds.), Proceedings of Society for Information Technology & Teacher Education International Conference 2013 (pp. 43–50). Chesapeake, VA: Association for the Advancement of Computing in Education (AACE).Google Scholar
  34. Lowyck, J., Elen, J., & Clarebout, G. (2004). Instructional conceptions: Analyses from an instructional design perspective. International Journal of Educational Research, 41, 429–444. doi: 10.1016/j.ijer.2005.08.010.CrossRefGoogle Scholar
  35. Malone, T. W. (1980). What makes things fun to learn? Heuristics for designing instructional computer games. In Proceedings of the 3rd ACM SIGSMALL Symposium and the 1st SIGPC Symposium (pp. 162–169). doi:  10.1145/800088.802839.
  36. Malone, T. W. (1981). Toward a theory of intrinsically motivating instruction. Cognitive Science, 5, 333–369. doi: 10.1016/S0364-0213(81)80017-1.CrossRefGoogle Scholar
  37. Malone, T. W., & Lepper, M. R. (1987). Making learning fun: A taxonomy of intrinsic motivation for learning. In R. E. Snow & M. J. Farr (Eds.), Aptitude, learning and instruction. Vol. 3: Conative and affective process analysis (pp. 223–253). Hillsdale, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
  38. Mayer, R. E., & Johnson, C. I. (2010). Adding instructional features that promote learning in a game-like environment. Journal of Educational Computing Research, 42, 241–265. doi: 10.2190/EC.42.3.a.CrossRefGoogle Scholar
  39. Merrill, M. D. (2002). First principles of instruction. Educational Technology Research and Development, 50(3), 43–59. doi: 10.1007/BF02505024.CrossRefGoogle Scholar
  40. Miller, C. S., Lehman, J. F., & Koedinger, K. R. (1999). Goals and learning in micro worlds. Cognitive Science, 23, 305–336. doi: 10.1207/s15516709cog2303_2.CrossRefGoogle Scholar
  41. Moreno, R., & Mayer, R. E. (2005). Role of guidance, reflection, and interactivity in an agent-based multimedia game. Journal of Educational Psychology, 97, 117–128. doi: 10.1037/0022-0663.97.1.117.CrossRefGoogle Scholar
  42. Peng, W., & Hsieh, G. (2012). The influence of competition, cooperation, and player relationship in a motor performance centered computer game. Computers in Human Behavior, 28, 2100–2106. doi: 10.1016/j.chb.2012.06.014.CrossRefGoogle Scholar
  43. Placklé, I., Könings, K. D., Jacquet, W., Struyven, K., Libotton, A., van Merriënboer, J. J. G., et al.. (2014). Students’ preferred characteristics of learning environments in vocational secondary education. International Journal for Research in Vocational Education and Training (IJRVET), 1, 107–124. doi: 10.13152/IJRVET.1.2.2.Google Scholar
  44. Reigeluth, C. M., Merrill, M. D., Wilson, B. G., & Spiller, R. T. (1980). The elaboration theory of instruction: A model for sequencing and synthesizing instruction. Instructional Science, 9, 195–219. doi: 10.1007/BF00177327.CrossRefGoogle Scholar
  45. Richards, D., Fassbender, E., Bilgin, A., & Thompson, W. F. (2008). An investigation of the role of background music in IVW’s for learning. ALT-J: Research in Learning Technology, 16, 231–244.CrossRefGoogle Scholar
  46. Ryder, M. (2015). Instructional design models and methods. Retrieved from http://www.instructionaldesigncentral.com/htm/IDC_instructionaldesignmodels.htm#gagne
  47. Shaffer, D. W. (2004). Pedagogical praxis: The professions as models for postindustrial education. Teachers College Record, 106, 1401–1421.CrossRefGoogle Scholar
  48. Shute, V. J., & Zapata-Rivera, D. (2008). Adaptive technologies. In J. M. Spector, M. D. Merrill, J. J. G. van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research on educational communication and technology (3rd ed., pp. 277–294). New York, NY: Taylor and Francis.Google Scholar
  49. Struyven, K., Dochy, F., Janssens, S., & Gielen, S. (2008). Students’ experiences with contrasting learning environments: The added value of students’ perceptions. Learning Environments Research, 11, 83–109. doi: 10.1007/s10984-008-9041-8.CrossRefGoogle Scholar
  50. ter Vrugte, J., de Jong, T., Vandercruysse, S., Wouters, P., van Oostendorp, H., & Elen, J. (2015). How competition and heterogeneous collaboration interact in prevocational game-based mathematics education. Computers & Education, 89, 42–52. doi: 10.1016/j.compedu.2015.08.010.CrossRefGoogle Scholar
  51. ter Vrugte, J., de Jong, T., Wouters, P., Vandercruysse, S., Elen, J., & van Oostendorp, H. (2015). When a game supports prevocational math education but integrated reflection does not. Journal of Computer Assisted Learning, 31, 462–480. doi: 10.1111/jcal.12104.CrossRefGoogle Scholar
  52. Tobias, S. (1982). When do instructional methods make a difference? Educational Researcher, 11(4), 4–9.Google Scholar
  53. Tobias, S. (2009). An eclectic appraisal of the success or failure of constructivist instruction. In S. Tobias & T. D. Duffy (Eds.), Constructivist theory applied to education: Success or failure? (pp. 335–350). New York: Routledge, Taylor and Francis.Google Scholar
  54. Tobias, S., & Fletcher, J. D. (2012). Learning from computer games: A research review. In S. De Wannemacker, S. Vandercruysse, & G. Clarebout, (Eds.), Serious games: The challenge. (Vol. CCIS 280, pp. 6–18). Berlin, Germany: Springer. doi:  10.1007/978-3-642-33814-4_2.
  55. Tobias, S., Fletcher, J. D., Dai, D. Y., & Wind, A. P. (2011). Review of research on computer games. In S. Tobias & J. D. Fletcher (Eds.), Computer games and instruction (pp. 127–221). Charlotte, NC: Information Age Publishing Inc.Google Scholar
  56. Vandercruysse, S., ter Vrugte, J., de Jong, T., Wouters, P., van Oostendorp, H., Verschaffel, L., et al. (accepted). Content integration as a factor in math game effectiveness. Educational Technology Research & Development.Google Scholar
  57. Vandercruysse, S., Desmet, E., Vandewaetere, M., & Elen, J. (2015). Integration in the curriculum as a factor in math-game effectiveness. In J. Torbeyns, E. Lehtinen, & J. Elen (Eds.), Describing and studying domain‐specific serious games (pp. 133–153). Cham, Switzerland: Springer International Publishing AG. doi: 10.1007/978-3-319-20276-1_9.CrossRefGoogle Scholar
  58. Vandercruysse, S., ter Vrugte, J., de Jong, T., Wouters, P., van Oostendorp, H., Verschaffel, L., et al. (2016). The effectiveness of a math game: The impact of integrating conceptual clarification as support. Computer in Human Behaviour. 64, 21–33. Google Scholar
  59. Vandercruysse, S., ter Vrugte, J., de Jong, T., Wouters, P., van Oostendorp, H., Verschaffel, L., et al. (n.d.). The effectiveness of a math game: The impact of integrating part task practice as support. Computers & Education. Google Scholar
  60. Vandercruysse, S., Van Cauwenberghe, V., & Elen, J. (n.d.). The effectiveness of game-based learning: The impact of curriculum integration. Journal of Curriculum Studies. Google Scholar
  61. Vandercruysse, S., van Weijnen, S., Vandewaetere, M., & Elen, J. (2015). Competitie als game element integreren in de BSO-klaspraktijk. [Integrating competition as game element in the vocational secondary classroom]. Pedagogische Studiën, 92, 179–201.Google Scholar
  62. Vandercruysse, S., Vandewaetere, M., & Clarebout, G. (2012). Game-based learning: A review on the effectiveness of educational games. In M. Cruz-Cunha (Ed.), Handbook of research on serious games as educational, business, and research tools (pp. 628–647). Hershey, PA: IGI Global. doi: 10.4018/978-1-4666-0149-9.ch032.CrossRefGoogle Scholar
  63. Vandewaetere, M., Vandercruysse, S., & Clarebout, G. (2012). Learners’ perceptions and illusions of adaptivity in compute-based learning environments. Educational Technology Research and Development, 60, 307–324. doi: 10.1007/s11423-011-9225-2.CrossRefGoogle Scholar
  64. Vlaamse Overheid. (2010). Project Algemene Vakken. Concretisering eindtermen. Secundair onderwijs—Tweede graad BSO [Project General Subjects. Reifying the attainment targets. Secondary education—Second grade VSE]. Brussel: Vlaams Ministerie van Onderwijs en Vorming.Google Scholar
  65. Walker, D. F., & Soltis, J. F. (1997). Curriculum and aims. New York, NY: Teachers College Press.Google Scholar
  66. Winne, P. H. (1987). Why process-product research cannot explain process-product finding and a proposed remedy: the cognitive mediational paradigm. Teaching and Teacher Education, 3, 333–356. doi: 10.1016/0742-051X(87)90025-4.CrossRefGoogle Scholar
  67. Winne, P. H. (2004). Students’ calibration of knowledge and learning processes: Implications for designing powerful software learning environments. International Journal of Educational Research, 41, 466–488. doi: 10.1016/j.ijer.2005.08.012.CrossRefGoogle Scholar
  68. Wouters, P., & van Oostendorp, H. (2013). A meta-analytic review of the role of instructional support in game-based learning. Computers & Education, 60, 412–425. doi: 10.1016/j.compedu.2012.07.018.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.CIP&T, Center for Instructional Psychology and Technology, KU LeuvenLeuvenBelgium

Personalised recommendations