Skip to main content

Quality Control and Assurance (QAQC)

  • Chapter
  • First Online:
Applied Mining Geology

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 12))

  • 3343 Accesses

Abstract

The chapter provides a detailed review of the modern principles and techniques applied in mining industry to assure the samples quality and their appropriateness for evaluation of the mineral deposits. This group of techniques is traditionally referenced as Quality Assurance – Quality Control system and often called by acronym ‘QAQC’. In general, QAQC procedures consist of monitoring accuracy and precision of analytical results, controlling the samples contamination, timely diagnostics of the sample errors and identification the error sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    For consistency with other measurements coefficient of variation (CV) (one standard deviation divided by mean) is expressed as percentage (CV%)

  2. 2.

    Conventional formula (Goovaerts 1997) of the relative variogram is as follows \( {\gamma}_{\mathrm{R}}\ \left(\mathbf{\mathsf{h}}\right) = \frac{1}{2\mathrm{N}}{\displaystyle \sum_{\mathrm{i}=1}^N\frac{\kern1.25em \left[\mathrm{Z}\left({\mathrm{x}}_{\mathrm{i}}\right) - \mathrm{Z}\right({\mathrm{x}}_{\mathrm{i}}+\mathbf{\mathsf{h}}{\left)\right]}^2\kern0.5em }{{\mathrm{m}}^2}} \), where Z(x) is a value of variable (Z) at the location (x), (h) is a vector separating Z(x) from \( \mathrm{Z}\left({\mathrm{x}}_{\mathrm{i}}+\mathbf{\mathsf{h}}\right) \) points and (m) is mean of the variable [Z(x)]

  3. 3.

    Conventional formula (Goovaerts 1997) of the pair-wise relative variogram: \( {\gamma}_{\mathrm{PWR}}\ \left(\mathbf{\mathsf{h}}\right) = \dfrac{1}{2\mathrm{N}}{\displaystyle \sum_{\mathrm{i}=1}^N\dfrac{\kern1.25em \left[\mathrm{Z}\left({\mathrm{x}}_{\mathrm{i}}\right)-\mathrm{Z}\right({\mathrm{x}}_{\mathrm{i}}+\mathbf{\mathsf{h}}{\left)\right]}^2\kern0.5em }{{\left[\dfrac{\mathrm{Z}\left({\mathrm{x}}_{\mathrm{i}}\right) + \mathrm{Z}\left({\mathrm{x}}_{\mathrm{i}}+\mathbf{\mathsf{h}}\right)}{2}\right]}^2}} \), where Z(x) is a value of variable (Z) at the location (x) and (h) is a vector separating Z(x) from \( \mathrm{Z}\left({\mathrm{x}}_{\mathrm{i}}+\mathbf{\mathsf{h}}\right) \) points

  4. 4.

    For consistency with other estimates discussed in this section the (PRMA(%)) value is estimated at 1 standard deviation and expressed as percentage.

References

  • Abzalov MZ (1998) Chrome-spinels in gabbro-wehrlite intrusions of the Pechenga area, Kola Peninsula, Russia: emphasis on alteration features. Lithos 43(3):109–134

    Article  Google Scholar 

  • Abzalov MZ (1999) Gold deposits of the Russian North East (the Northern Circum Pacific): metallogenic overview. In: Proceedings of the PACRIM ‘99 symposium. AusIMM, Melbourne, pp 701–714

    Google Scholar 

  • Abzalov MZ (2007) Granitoid hosted Zarmitan gold deposit, Tian Shan belt, Uzbekistan. Econ Geol 102(3):519–532

    Article  Google Scholar 

  • Abzalov MZ (2008) Quality control of assay data: a review of procedures for measuring and monitoring precision and accuracy. Exp Min Geol J 17(3–4):131–144

    Article  Google Scholar 

  • Abzalov MZ (2009) Use of twinned drill – holes in mineral resource estimation. Exp Min Geol J 18(1–4):13–23

    Article  Google Scholar 

  • Abzalov MZ (2011) Sampling errors and control of assay data quality in exploration and mining geology. In: Ivanov O (ed) Application and experience of quality control. InTECH, Vienna, pp 611–644

    Google Scholar 

  • Abzalov MZ (2014) Chapter 2: The resource database. Geostatistical criteria for choosing optimal ratio between quality and quantity of the samples: method and case studies. In: Mineral resource and ore reserves estimation, 2nd edn, AusIMM monograph 23. AusIMM, Melbourne, pp 91–96

    Google Scholar 

  • Abzalov MZ, Both RA (1997) The Pechenga Ni-Cu deposits, Russia: aata on PGE and Au distribution and sulphur isotope compositions. Mineral Petrol 61(1–4):119–143

    Article  Google Scholar 

  • Abzalov MZ, Humphreys M (2002a) Resource estimation of structurally complex and discontinuous mineralisation using non-linear geostatistics: case study of a mesothermal gold deposit in northern Canada. Exp Min Geol J 11(1–4):19–29

    Article  Google Scholar 

  • Abzalov MZ, Humphreys M (2002) Geostatistically assisted domaining of structurally complex mineralisation: method and case studies. Geostatistically assisted domaining of structurally complex mineralisation: method and case studies. In: The AusIMM 2002 conference: 150 years of mining, Publication series No 6/02, pp 345–350

    Google Scholar 

  • Abzalov MZ, Mazzoni P (2004) The use of conditional simulation to assess process risk associated with grade variability at the Corridor Sands detrital ilmenite deposit. In: Dimitrakopoulus R, Ramazan S (eds) Ore body modelling and strategic mine planning: uncertainty and risk management. AusIMM, Melbourne, pp 93–101

    Google Scholar 

  • Abzalov MZ, Pickers N (2005) Integrating different generations of assays using multivariate geostatistics: a case study. Trans Inst Min Metall 114:B23–B32

    Google Scholar 

  • Abzalov MZ, Brewer TS, Polezhaeva LI (1997) Chemistry and distribution of accessory Ni, Co, Fe arsenic minerals in the Pechenga Ni-Cu deposits, Kola Peninsula, Russia. Mineral Petrol 61(1–4):145–161

    Article  Google Scholar 

  • Abzalov MZ, Menzel B, Wlasenko M, Phillips J (2010) Optimisation of the grade control procedures at the Yandi iron-ore mine, Western Australia: geostatistical approach. Appl Earth Sci 119(3):132–142

    Article  Google Scholar 

  • Abzalov MZ, van der Heyden A, Saymeh A, Abuqudaira M (2015) Geology and metallogeny of Jordanian uranium deposits. Appl Earth Sci 124(2):63–77

    Article  Google Scholar 

  • Bumstead ED (1984) Some comments on the precision and accuracy of gold analysis in exploration. Proc AusIMM (289): 71–78

    Google Scholar 

  • CANMET (1998) Assessment of laboratory performance with certified reference materials. CANMET Canadian Certified Reference Materials Project Bulletin, p 5

    Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New York, p 638

    Google Scholar 

  • Dominy SC, Annels AE, Johansen GF, Cuffley BW (2000) General considerations of sampling and assaying in a coarse gold environment. Trans Inst Min Metall 109:B145–B167

    Google Scholar 

  • Eremeev AN, Ostroumov GV, Anosov VV, Berenshtein LE, Korolev VP, Samonov IZ (1982) Instruction on internal, external and arbitrary quality control of the exploration samples assayed in the laboratories of the ministry of geology of the USSR. VIMS, Moscow, p 106 (in Russian)

    Google Scholar 

  • Francois-Bongarcon D (1998) Error variance information from paired data: application to sampling theory. Exp Min Geol J 7(1–2):161–165

    Google Scholar 

  • Garrett RG (1969) The determination of sampling and analytical errors in exploration geochemistry. Econ Geol 64(5):568–569

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York, p 483

    Google Scholar 

  • Howarth R, Thompson M (1976) Duplicate analysis in geochemical practice: Part 2, examination of proposed method and examples of its use. Analyst 101:699–709

    Article  Google Scholar 

  • ISO Guide 33 (1989) Uses of certified reference materials. Standards Council of Canada, Ontario, p 12

    Google Scholar 

  • Kane JS (1992) Reference samples for use in analytical geochemistry: their availability preparation and appropriate use. J Geochem Exp 44:37–63

    Article  Google Scholar 

  • Leaver ME, Sketchley DA, Bowman WS (1997) The benefits of the use of CCRMP’s custom reference materials. Canadian certified reference materials project. In: Society of mineral analysts conference. MSL No 637, p 16

    Google Scholar 

  • Long S (1998) Practical quality control procedures in mineral inventory estimation. Exp Min Geol 7(1–2):117–127

    Google Scholar 

  • Pitard FF (1998) A strategy to minimise ore grade reconciliation problems between the mine and the mill. In: Mine to mill. AusIMM, Melbourne, pp 77–82

    Google Scholar 

  • Roden S, Smith T (2001) Sampling and analysis protocols and their role in mineral exploration and new resource development. In: Edwards A (ed) Mineral resources and ore reserve estimation – the AusIMM guide to good practise. AusIMM, Melbourne, pp 73–78

    Google Scholar 

  • Shaw WJ (1997) Validation of sampling and assaying quality for bankable feasibility studies. In: The resource database towards 2000. AusIMM Illawara branch, Wollongong, Australia, pp 69–79

    Google Scholar 

  • Sinclair AJ, Bentzen A (1998) Evaluation of errors in paired analytical data by a linear model. Exp Min Geol 7(1–2):167–173

    Google Scholar 

  • Sinclair AJ, Blackwell GH (2002) Applied mineral inventory estimation. Cambridge University Press, Cambridge, p 381

    Book  Google Scholar 

  • Sketchley DA (1998) Gold deposits: establishing sampling protocols and monitoring quality control. Exp Min Geol 7(1–2):129–138

    Google Scholar 

  • Stanley CR (2006) On the special application of Thompson-Howarth error analysis to geochemical variables exhibiting a nugget effect. Geochem Explor Environ Anal 6:357–368

    Article  Google Scholar 

  • Stanley CR, Lawie D (2007a) Average relative error in geochemical determinations: clarification, calculation and a plea for consistency. Exp Min Geol 16:265–274

    Google Scholar 

  • Stanley CR, Lawie D (2007b) Thompson-Howarth error analysis: unbiased alternatives to the large-sample method for assessing non-normally distributed measurement error in geochemical samples: Geochemistry: Exploration. Environ Anal 7:1–10

    Google Scholar 

  • Taylor JK (1987) Quality assurance of chemical measurements. Lewis Publishers, Michigan, p 135

    Google Scholar 

  • Thompson M, Howarth R (1973) The rapid estimation and control of precision by duplicate determinations. Analyst 98(1164):153–160

    Article  Google Scholar 

  • Thompson M, Howarth R (1976) Duplicate analysis in geochemical practice: Part 1. Theoretical approach and estimation of analytical reproducibility. Analyst 101:690–698

    Article  Google Scholar 

  • Thompson M, Howarth R (1978) A new approach to the estimation of analytical precision. J Geochem Exp 9(1):23–30

    Article  Google Scholar 

  • Vallee M, David M, Dagbert M, Desrochers C (1992) Guide to the evaluation of gold deposits: Geological Society of CIM, Special Volume 45, p 299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abzalov, M. (2016). Quality Control and Assurance (QAQC). In: Applied Mining Geology. Modern Approaches in Solid Earth Sciences, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-39264-6_10

Download citation

Publish with us

Policies and ethics