Schema Evolution for Databases and Data Warehouses

  • Petros Manousis
  • Panos VassiliadisEmail author
  • Apostolos Zarras
  • George Papastefanatos
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 253)


Like all software systems, databases are subject to evolution as time passes. The impact of this evolution is tremendous as every change to the schema of a database affects the syntactic correctness and the semantic validity of all the surrounding applications and de facto necessitates their maintenance in order to remove errors from their source code. This survey provides a walk-through on different approaches to the problem of handling database and data warehouse schema evolution. The areas covered include (a) published case studies with statistical information on database evolution, (b) techniques for managing schema and view evolution, (c) techniques pertaining to the area of data warehouses, and, (d) prospects for future research.


Data Warehouse Schema Change Database Schema Database Evolution Augmented Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Roddick, J.F.: A survey of schema versioning issues for database systems. Inf. Softw. Technol. 37(7), 383–393 (1995)CrossRefGoogle Scholar
  2. 2.
    Hartung, M., Terwilliger, J.F., Rahm, E.: Recent advances in schema and ontology evolution. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds.) Schema Matching and Mapping. data-centric systems and applications, pp. 149–190. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Sjøberg, D.: Quantifying schema evolution. Inf. Softw. Technol. 35(1), 35–44 (1993)CrossRefGoogle Scholar
  4. 4.
    Curino, C., Moon, H.J., Tanca, L., Zaniolo, C.: Schema evolution in wikipedia: toward a web information system Benchmark. In: Proceedings of 10th International Conference on Enterprise Information Systems (ICEIS) (2008)Google Scholar
  5. 5.
    Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the PRISM workbench. Proc. VLDB Endowment 1, 761–772 (2008)CrossRefGoogle Scholar
  6. 6.
    Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Automating the database schema evolution process. VLDB J. 22(1), 73–98 (2013)CrossRefGoogle Scholar
  7. 7.
    Lin, D.Y., Neamtiu, I.: Collateral evolution of applications and databases. In: Proceedings of the Joint International and Annual ERCIM Workshops on Principles of Software Evolution and Software Evolution Workshops (IWPSE), pp. 31–40 (2009)Google Scholar
  8. 8.
    Wu, S., Neamtiu, I.: Schema evolution analysis for embedded databases. In: Proceedings of the 27th IEEE International Conference on Data Engineering Workshops (ICDEW), pp. 151–156 (2011)Google Scholar
  9. 9.
    Qiu, D., Li, B., Su, Z.: An empirical analysis of the co-evolution of schema and code in database applications. In: Proceedings of the 9th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), pp. 125–135(2013)Google Scholar
  10. 10.
    Skoulis, I., Vassiliadis, P., Zarras, A.: Open-source databases: within, outside, or beyond Lehman’s laws of software evolution? In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 379–393. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Skoulis, I., Vassiliadis, P., Zarras, A.: Growing Up with Stability: how Open-Source Relational Databases Evolve. Information Systems in press (2015)Google Scholar
  12. 12.
    Vassiliadis, P., Zarras, A.V., Skoulis, I.: How is life for a table in an evolving relational schema? birth, death and everything in between. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., Pastor López, Ó. (eds.) ER 2015. LNCS, vol. 9381, pp. 453–466. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25264-3_34 CrossRefGoogle Scholar
  13. 13.
    Lehman, M.M., Fernandez-Ramil, J.C.: Rules and tools for software evolution planning and management. In: Software Evolution and Feedback: Theory and Practice. Wiley (2006)Google Scholar
  14. 14.
    Belady, L.A., Lehman, M.M.: A model of large program development. IBM Syst. J. 15(3), 225–252 (1976)CrossRefzbMATHGoogle Scholar
  15. 15.
    Herraiz, I., Rodriguez, D., Robles, G., Gonzalez-Barahona, J.M.: The evolution of the laws of software evolution: a discussion based on a systematic literature review. ACM Comput. Surv. 46(2), 1–28 (2013)CrossRefGoogle Scholar
  16. 16.
    Lehman, M.M., Fernandez-Ramil, J.C., Wernick, P., Perry, D.E., Turski, W.M.: Metrics and laws of software evolution - the nineties view. In: Proceedings of the 4th IEEE International Software Metrics Symposium (METRICS), pp. 20–34 (1997)Google Scholar
  17. 17.
    Oracle: Oracle Change Management Pack (2014).
  18. 18.
  19. 19.
    IBM: IBM DB2 object comparison tool for Z/OS version 10 release 1 (2012).
  20. 20.
    Microsoft: SQL management studio for SQL server user’s manual (2012).
  21. 21.
    Snaidero, B.: Capture SQL Server Schema Changes Using the Default Trace. Technical report, MSSQLTips (2015).
  22. 22.
    Microsoft: Microsoft SQL server data tools: Database development zero to sixty (2012).
  23. 23.
    Terwilliger, J.F., Bernstein, P.A., Unnithan, A.: Worry-free database upgrades: automated model-driven evolution of schemas and complex mappings. In: Elmagarmid, A.K., Agrawal, D. (eds.) Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, 6–10 June 2010, pp. 1191–1194. ACM (2010)Google Scholar
  24. 24.
    Foundation, D.S.: Django (2015).
  25. 25.
  26. 26.
    DAINTINESS-Group: Hecate (2015).
  27. 27.
    DAINTINESS-Group: Hecataeus (2015).
  28. 28.
    Maule, A., Emmerich, W., Rosenblum, D.S.: Impact analysis of database schema changes. In: Schäfer, W., Dwyer, M.B., Gruhn, V. (eds.) ICSE, pp. 451–460. ACM (2008)Google Scholar
  29. 29.
    Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: Policy-regulated management of ETL evolution. J. Data Semant. 13, 147–177 (2009)CrossRefGoogle Scholar
  30. 30.
    Papastefanatos, G., Vassiliadis, P., Simitsis, A., Aggistalis, K., Pechlivani, F., Vassiliou, Y.: Language extensions for the automation of database schema evolution. In: Cordeiro, J., Filipe, J. (eds.) ICEIS (1), pp. 74–81 (2008)Google Scholar
  31. 31.
    Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: Design metrics for data warehouse evolution. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 440–454. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: HECATAEUS: regulating schema evolution. In: Proceedings of the 26th IEEE International Conference on Data Engineering (ICDE), pp. 1181–1184 (2010)Google Scholar
  33. 33.
    Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: Metrics for the prediction of evolution impact in ETL ecosystems: a case study. J. Data Semant. 1(2), 75–97 (2012)CrossRefGoogle Scholar
  34. 34.
    Manousis, P., Vassiliadis, P., Papastefanatos, G.: Automating the adaptation of evolving data-intensive ecosystems. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 182–196. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  35. 35.
    Manousis, P., Vassiliadis, P., Papastefanatos, G.: Impact analysis and policy-conforming rewriting of evolving data-intensive ecosystems. J. Data Semant. 4(4), 231–267 (2015)CrossRefGoogle Scholar
  36. 36.
    Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Update rewriting and integrity constraint maintenance in a schema evolution support system: PRISM++. PVLDB 4(2), 117–128 (2010)Google Scholar
  37. 37.
    Mohania, M.: Avoiding re-computation: view adaptation in data warehouses. In: Proceedings of 8th International Database Workshop, Hong Kong, pp. 151–165 (1997)Google Scholar
  38. 38.
    Gupta, A., Mumick, I.S., Rao, J., Ross, K.A.: Adapting materialized views after redefinitions: techniques and a performance study. Inf. Syst. 26(5), 323–362 (2001)CrossRefzbMATHGoogle Scholar
  39. 39.
    Nica, A., Lee, A.J., Rundensteiner, E.A.: The CVS algorithm for view synchronization in evolvable large-scale information systems. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 357–373. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  40. 40.
    Golfarelli, M., Rizzi, S.: A survey on temporal data warehousing. IJDWM 5(1), 1–17 (2009)Google Scholar
  41. 41.
    Wrembel, R.: A survey of managing the evolution of data warehouses. IJDWM 5(2), 24–56 (2009)Google Scholar
  42. 42.
    Bellahsène, Z.: View adaptation in data warehousing systems. In: Quirchmayr, G., Bench-Capon, T.J.M., Schweighofer, E. (eds.) DEXA 1998. LNCS, vol. 1460, pp. 300–309. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  43. 43.
    Bellahsene, Z.: Schema evolution in data warehouses. Knowl. Inf. Syst. 4(3), 283–304 (2002)CrossRefGoogle Scholar
  44. 44.
    Quix, C.: Repository support for data warehouse evolution. In: Gatziu, S., Jeusfeld, M.A., Staudt, M., Vassiliou, Y. (eds.) DMDW. CEUR Workshop Proceedings, vol. 19. (1999)Google Scholar
  45. 45.
    Blaschka, M., Sapia, C., Höfling, G.: On schema evolution in multidimensional databases. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 153–164. Springer, Heidelberg (1999)Google Scholar
  46. 46.
    Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Maintaining data cubes under dimension updates. In: Kitsuregawa, M., Papazoglou, M.P., Pu, C. (eds.) ICDE, pp. 346–355. IEEE Computer Society (1999)Google Scholar
  47. 47.
    Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Updating OLAP dimensions. In: Song, I.Y., Teorey, T.J. (eds.) DOLAP, pp. 60–66. ACM (1999)Google Scholar
  48. 48.
    Kaas, C., Pedersen, T.B., Rasmussen, B.: Schema evolution for stars and snowflakes. In: ICEIS (1), pp. 425–433(2004)Google Scholar
  49. 49.
    Wrembel, R., Bebel, B.: Metadata management in a multiversion data warehouse. J. Data Semant. 8, 118–157 (2007)zbMATHGoogle Scholar
  50. 50.
    Eder, J., Koncilia, C., Mitsche, D.: Automatic detection of structural changes in data warehouses. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 119–128. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  51. 51.
    Eder, J., Koncilia, C., Mitsche, D.: Analysing slices of data warehouses to detect structural modifications. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 492–505. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  52. 52.
    Eder, J., Koncilia, C.: Changes of dimension data in temporal data warehouses. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 284–293. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  53. 53.
    Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in data warehouses: enabling cross-version querying via schema augmentation. Data Knowl. Eng. 59(2), 435–459 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Petros Manousis
    • 1
  • Panos Vassiliadis
    • 1
    Email author
  • Apostolos Zarras
    • 1
  • George Papastefanatos
    • 2
  1. 1.Department of Computer ScienceUniversity of Ioannina (Ioannina, Hellas)IoanninaGreece
  2. 2.Athena Research Center (Athens, Hellas)AthensGreece

Personalised recommendations