Skip to main content

Measures of the Basins of Attracting n-Cycles for the Relaxed Newton’s Method

  • Chapter
  • First Online:
Advances in Iterative Methods for Nonlinear Equations

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 10))

Abstract

The relaxed Newton’s method modifies the classical Newton’s method with a parameter h in such a way that when it is applied to a polynomial with multiple roots and we take as parameter one of these multiplicities, it is increased the order of convergence to the related multiple root.For polynomials of degree three or higher, the relaxed Newton’s method may possess extraneous attracting (even super-attracting) cycles. The existence of such cycles is an obstacle for using the relaxed Newton’s method to find the roots of the polynomial. Actually, the basins of these attracting cycles are open subsets of \(\mathbb{C}\).The authors have developed some algorithms and implementations that allow to compute the measure (area or probability) of the basin of a p-cycle when it is taken in the Riemann sphere. In this work, given a non negative integer n, we use our implementations to study the basins of non-repelling p-cycles, for 1 ≤ p ≤ n, when we perturb the relaxing parameter h. As a consequence, we quantify the efficiency of the relaxed Newton’s method by computing, up to a given precision, the measure of the different attracting basins of non-repelling cycles.In this way, we can compare the measure of the basins of the ordinary fixed points (corresponding to the polynomial roots) with the measure of the basins of the point at infinity and the basins of other non-repelling p-cyclic points for p > 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Beardon, A.F.: Iteration of Rational Functions. Springer, New York (2000)

    MATH  Google Scholar 

  3. Campbell, J.T., Collins, J.T.: Specifying attracting cycles for Newton maps of polynomials (2013). arXiv:1208.5687

    Google Scholar 

  4. Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013, Article ID 780153 (2013)

    Google Scholar 

  5. Curry, J.H., Garnett, L., Sullivan, D.: On the iteration of a rational function: computer experiments with Newton’s method. Commun. Math. Phys. 91, 267–277 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. García-Calcines, J.M., Hernández, L.J., Rivas, M.T.: Limit and end functors of dynamical systems via exterior spaces. Bull. Belg. Math. Soc. Simon Stevin 20, 937–959 (2013)

    MathSciNet  MATH  Google Scholar 

  7. García-Calcines, J.M., Hernández, L.J., Rivas, M.T.: A completion construction for continuous dynamical systems. Topol. Methods Nonlinear Anal. (2014, to appear)

    Google Scholar 

  8. Gutiérrez, J.M., Hernández, L.J., Marañón, M., Rivas, M.T.: Influence of the multiplicity of the roots on the basins of attraction of Newton’s method. Numer. Algorithm 66 (3), 431–455 (2014)

    Article  MATH  Google Scholar 

  9. Hernández, L.J., Marañón, M., Rivas, M.T.: Plotting basins of end points of rational maps with Sage. Tbil. Math. J. 5 (2), 71–99 (2012)

    MATH  Google Scholar 

  10. Kriete, H.: Holomorphic motions in the parameter space for relaxed Newton’s method. Kodai Math. J. 25, 89–107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Magreñán, Á.A.: Estudio de la dinámica del método de Newton amortiguado. Ph.D. thesis, Serv. de Publ. Univ. La Rioja (2013)

    Google Scholar 

  12. Magreñán, Á.A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Plaza, S., Romero, N.: Attracting cycles for relaxed Newton’s method. J. Comput. Appl. Math. 235, 3238–3244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Roberts, G.E., Horgan-Kobelski, J.: Newton’s versus Halley’s method: a dynamical systems approach. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 14 (10), 3459–3475 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intell. 24 (1), 37–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This scientific work has been supported by the project PROFAI13/15 of the Universidad of La Rioja and the project MTM2011-28636-C02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gutiérrez, J.M., Hernández, L.J., Magreñán, Á.A., Rivas, M.T. (2016). Measures of the Basins of Attracting n-Cycles for the Relaxed Newton’s Method. In: Amat, S., Busquier, S. (eds) Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-39228-8_9

Download citation

Publish with us

Policies and ethics