Skip to main content

Hydrodynamic and Optical Waves: A Common Approach for Unidimensional Propagation

  • Chapter
  • First Online:
Rogue and Shock Waves in Nonlinear Dispersive Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 926))

Abstract

The aim of this chapter is to build a bridge between water and optical waves. After a brief introduction on the role played by the so-called normal variable in the D’Alembert equation and a short description of the Hamiltonian formulation of water waves, we introduce a similar formalism for describing optical waves. We restrict our analysis to one-dimensional propagation. Under a number of assumptions, we rewrite the Maxwell equations in a very general form that account for three- and four-wave interactions. Those equations are very similar to the one describing water waves. Analogies and differences between hydrodynamic and optical waves are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benney, D., Newell, A.: Propagation of nonlinear wave envelopes. J. Math. Phys. 46 (2), 133 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hasimoto, H., Ono, H.: Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 33 (3), 805–811 (1972)

    Article  ADS  Google Scholar 

  3. Zakharov, V.: Stability of period waves of finite amplitude on surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)

    Article  ADS  Google Scholar 

  4. Zakharov, V.: Instability of self-focusing of light. Sov. Phys. JETP 26 (5), 994 (1968)

    ADS  Google Scholar 

  5. Chabchoub, A., Kibler, B., Finot, C., Millot, G., Onorato, M., Dudley, J., Babanin, A.: The nonlinear schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface. Ann. Phys. 361, 490–500 (2015)

    Article  MathSciNet  Google Scholar 

  6. Ablowitz, M.J.: Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons, vol. 47. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  7. Krasitskii, V.: On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 1–20 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Janssen, P.: On some consequences of the canonical transformation in the hamiltonian theory of water waves. J. Fluid Mech. 637 (1), 1–44 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Janssen, P.A.E.M.: Nonlinear four–wave interaction and freak waves. J. Phys. Oceanogr. 33 (4), 863–884 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. Annenkov, S.Y., Shrira, V.I.: Numerical modeling of water–wave evolution based on the Zakharov equation. J. Fluid. Mech. 449, 341–371 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Annenkov, S.Y., Shrira, V.I.: Evolution of kurtosis for wind waves. Geophys. Res. Lett. 36, L13603 (2009)

    Article  ADS  Google Scholar 

  12. Amiranashvili, S., Demircan, A.: Hamiltonian structure of propagation equations for ultrashort optical pulses. Phys. Rev. A 82 (1), 013812 (2010)

    Article  ADS  Google Scholar 

  13. Amiranashvili, S.: Hamiltonian framework for short optical pulses. In: New Approaches to Nonlinear Waves. Springer, Cham (2016), pp. 153–196

    Google Scholar 

  14. Janssen, P.A.E.M.: The Interaction of Ocean Waves and Wind. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  15. Janssen, P.A.E.M., Onorato, M.: The intermediate water depth limit of the Zakharov equation and consequences for wave prediction. J. Phys. Oceanogr. 37, 2389–2400 (2007)

    Article  ADS  Google Scholar 

  16. Gramstad, O., Trulsen, K.: Hamiltonian form of the modified nonlinear schrödinger equation for gravity waves on arbitrary depth. J. Fluid Mech. 670, 404–426 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Boyd, R.W.: Nonlinear Optics. Academic, London (2003)

    Google Scholar 

  18. Agrawal, G.P.: Nonlinear Fiber Optics. Academic, San Diego (2007)

    MATH  Google Scholar 

  19. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S.: Rogue waves emerging from the resonant interaction of three waves. Phys. Rev. Lett. 111 (11), 114101 (2013)

    Article  ADS  Google Scholar 

  20. Zakharov, V., Manakov, S.: Resonant interaction of wave packets in nonlinear media. Zh. Eksp. Teor. Fiz. Pisma Red 18, 413 (1973)

    ADS  Google Scholar 

  21. Craik, A.D.: Wave Interactions and Fluid Flows. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  22. Kit, E., Shemer, L.: Spatial versions of the Zakharov and Dysthe evolution equations for deep-water gravity waves. J. Fluid Mech. 450, 201–205 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Stokes, G.G.: On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8, 441–473 (1847)

    Google Scholar 

  24. Chabchoub, A., Hoffmann, N., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106 (20), 204502 (2011)

    Article  ADS  Google Scholar 

  25. Kibler, B., Fatome, J., Finot, C., Millot, G., Genty, G., Wetzel, B., Akhmediev, N., Dias, F., Dudley, J.: Observation of Kuznetsov-Ma soliton dynamics in optical fibre. Sci. Rep. 2, 463 (2012)

    Article  ADS  Google Scholar 

  26. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6 (10), 790–795 (2010)

    Article  Google Scholar 

  27. Kibler, B., Chabchoub, A., Gelash, A., Akhmediev, N., Zakharov, V.: Superregular breathers in optics and hydrodynamics: omnipresent modulation instability beyond simple periodicity. Phys. Rev. X 5 (4), 041026 (2015)

    Google Scholar 

  28. Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian formalism for nonlinear waves. Physics-Uspekhi 40 (11), 1087–1116 (1997)

    Article  ADS  Google Scholar 

  29. Nazarenko, S.: Wave Turbulence, vol. 825. Springer, Heidelberg (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

Miguel Onorato and Fabio Baronio were supported by MIUR Grant PRIN 2012BFNWZ2. Dr. B. Giulinico and F. Giardini are also acknowledged for discussions during the early stages of this work. Amin Chabchoub acknowledges support from the Burgundy Region, The Association of German Engineers (VDI) and the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Onorato .

Editor information

Editors and Affiliations

Appendix

Appendix

Coupling coefficient of the Zakharov equation (70) in optical waves in the presence of χ 2 and χ 3 media:

$$\displaystyle{ \tilde{T}_{1,2,3,4} = T_{1,2,3,4} + W_{1,2,3,4}, }$$
(77)

with

$$\displaystyle{ \begin{array}{rl} W_{1,2,3,4} & = -V _{1,3,1-3}V _{4,2,4-2}\left [ \frac{1} {k_{3}+k_{1-3}-k_{1}} + \frac{1} {k_{2}+k_{4-2}-k_{4}} \right ] \\ &\quad - V _{2,3,2-3}V _{4,1,4-1}\left [ \frac{1} {k_{3}+k_{2-3}-k_{2}} + \frac{1} {k_{1}+k_{4-1}-k_{4}} \right ] \\ &\quad - V _{1,4,1-4}V _{3,2,3-2}\left [ \frac{1} {k_{4}+k_{1-4}-k_{1}} + \frac{1} {k_{2}+k_{3-2}-k_{3}} \right ] \\ &\quad - V _{2,4,2-4}V _{3,1,3-1}\left [ \frac{1} {k_{4}+k_{2-4}-k_{2}} + \frac{1} {k_{1}+k_{3-1}-k_{3}} \right ] \\ &\quad - V _{1+2,1,2}V _{3+4,3,4}\left [ \frac{1} {k_{1+2}-k_{1}-k_{2}} + \frac{1} {k_{3+4}-k_{3}-k_{4}} \right ] \\ &\quad - V _{-1-2,1,2}V _{-3-4,3,4}\left [ \frac{1} {k_{1+2}+k_{1}+k_{2}} + \frac{1} {k_{3+4}+k_{3}+k_{4}} \right ]. \end{array} }$$
(78)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Onorato, M., Baronio, F., Conforti, M., Chabchoub, A., Suret, P., Randoux, S. (2016). Hydrodynamic and Optical Waves: A Common Approach for Unidimensional Propagation. In: Onorato, M., Resitori, S., Baronio, F. (eds) Rogue and Shock Waves in Nonlinear Dispersive Media. Lecture Notes in Physics, vol 926. Springer, Cham. https://doi.org/10.1007/978-3-319-39214-1_1

Download citation

Publish with us

Policies and ethics