Load Balancing in LTE by Tx Power Adjustment

  • Krzysztof Grochla
  • Konrad PołysEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 608)


The paper describes a novel method of load balancing in cellular networks based on the management of the reference signal transmit power. The method described is easy in implementation, as it requires only reconfiguration of one of the parameters already defined in the LTE eNodeB in response to the changes in spatial distribution of the clients in the network. The proposed method is evaluated using simulation. The results prove that it allows to significantly decrease the number of unsatisfied clients (by up to 50 % for partially overloaded network), while does not decrease the total efficiency of the network in terms of the summary amount of bits per second transferred by network in time.


LTE LB Load balancing SON HO Handover 



The work is partially supported by NCBIR Project LIDER/10/194/L-3/11/.


  1. 1.
    Cisco: Cisco visual networking index: global mobile data traffic forecast update, 2013–2018. Cisco Public Information (2014)Google Scholar
  2. 2.
    Boudreau, G., Panicker, J., Guo, N., Chang, R., Wang, N., Vrzic, S.: Interference coordination and cancellation for 4G networks. IEEE Commun. Mag. 47(4), 74–81 (2009)CrossRefGoogle Scholar
  3. 3.
    Johnson, C.W.: Long Term Evolution in Bullets. CreateSpace Independent Publishing Platform, North Charleston (2010)Google Scholar
  4. 4.
    Lobinger, A., Stefanski, S., Jansen, T., Balan, I.: Coordinating handover parameter optimization and load balancing in LTE self-optimizing networks. In: 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2011)Google Scholar
  5. 5.
    Stevens-Navarro, E., Lin, Y., Wong, V.W.: An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Trans. Veh. Technol. 57(2), 1243–1254 (2008)CrossRefGoogle Scholar
  6. 6.
    Elayoubi, S.E., Altman, E., Haddad, M., Altman, Z.: A hybrid decision approach for the association problem in heterogeneous networks. In: 2010 Proceedings IEEE INFOCOM, pp. 1–5. IEEE (2010)Google Scholar
  7. 7.
    Aryafar, E., Keshavarz-Haddad, A., Wang, M., Chiang, M.: Rat selection games in Hetnets. In: 2013 Proceedings IEEE INFOCOM, pp. 998–1006. IEEE (2013)Google Scholar
  8. 8.
    Niyato, D., Hossain, E.: Dynamics of network selection in heterogeneous wireless networks: an evolutionary game approach. IEEE Trans. Veh. Technol. 58(4), 2008–2017 (2009)CrossRefGoogle Scholar
  9. 9.
    Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., Yoo, T., Song, O., Malladi, D.: A survey on 3GPP heterogeneous networks. IEEE Wireless Commun. 18(3), 10–21 (2011)CrossRefGoogle Scholar
  10. 10.
    Bejerano, Y., Han, S.J.: Cell breathing techniques for load balancing in wireless LANs. IEEE Trans. Mobile Comput. 8(6), 735–749 (2009)CrossRefGoogle Scholar
  11. 11.
    Yang, S., Zhang, W., Zhao, X.: Virtual cell-breathing based load balancing in downlink LTE-a self-optimizing networks. In: 2012 International Conference on Wireless Communications Signal Processing (WCSP), pp. 1–6, October 2012Google Scholar
  12. 12.
    Grochla, K., Połys, K.: Dobór parametrów mechanizmu zwielokrotnienia wykorzystania częstotliwości SFR w sieciach LTE. In: Materiały konferencyjne Krajowego Sympozjum Telekomunikacji i Teleinformatyki. KSTiT (2015)Google Scholar
  13. 13.
    Gorawski, M., Grochla, K.: Review of mobility models for performance evaluation of wireless networks. In: Gruca, A., Czachórski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 573–584. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Erceg, V., Greenstein, L.J., Tjandra, S.Y., Parkoff, S.R., Gupta, A., Kulic, B., Julius, A., Bianchi, R., et al.: An empirically based path loss model for wireless channels in suburban environments. IEEE J. Sel. Areas Commun. 17(7), 1205–1211 (1999)CrossRefGoogle Scholar
  15. 15.
    Giambene, G., Yahiya, T.: LTE planning for soft frequency reuse. In: 2013 IFIP Wireless Days (WD), pp. 1–7, November 2013Google Scholar
  16. 16.
    Grochla, K., Połys, K.: Subcarrier allocation for lte soft frequency reuse based on graph colouring. In: Abdelrahman, O.H., Gelenbe, E., Gorbil, G., Lent, R. (eds.) ISCIS 2015. LNEE, pp. 447–454. Springer International Publishing, Switzerland (2016)CrossRefGoogle Scholar
  17. 17.
    Lobinger, A., Stefanski, S., Jansen, T., Balan, I.: Load balancing in downlink LTE self-optimizing networks (2010)Google Scholar
  18. 18.
    Fan, J., Yin, Q., Li, G.Y., Peng, B., Zhu, X.: MCS selection for throughput improvement in downlink LTE systems. In: 2011 Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN), pp. 1–5. IEEE (2011)Google Scholar
  19. 19.
    Piro, G., Baldo, N., Miozzo, M.: An LTE module for the NS-3 network simulator. In: Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques, pp. 415–422. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2011)Google Scholar
  20. 20.
    Kawser, M.T., Hamid, N.I.B., Hasan, M.N., Alam, M.S., Rahman, M.M.: Downlink SNR to CQI mapping for different multiple antenna techniques in LTE. Int. J. Inf. Electron. Eng. 2(5), 757–760 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Theoretical and Applied InformaticsPolish Academy of ScienceGliwicePoland

Personalised recommendations