MR of the Urogenital Tract in Children

  • J. Damien Grattan-SmithEmail author
  • Richard A. Jones
Part of the Medical Radiology book series (MEDRAD)


MR urography comprehensively evaluates the urinary tract in a single examination that does not use ionizing radiation (Grattan-Smith and Jones 2008; MD et al. 2010; Vivier et al. 2010b; Jones et al. 2011; Zhang et al. 2013b; Boss et al. 2014; Claudon et al. 2014). MR urography utilizes both static and dynamic imaging, taking advantage of the intrinsically high spatial and contrast resolution to provide high-resolution anatomic images. Additionally, dynamic imaging after administration of intravenous contrast medium is used to obtain functional information about the enhancement, concentration, and excretion of the kidneys using both qualitative and quantitative analysis. The signal changes related to perfusion, concentration, and excretion of the contrast agent can be evaluated sequentially as the contrast agent passes through the renal cortex, the medulla, and then into the collecting systems. Urinary tract anatomy is assessed using a combination of both T2-weighted and contrast-enhanced images. MR urography is similar to intravenous urography but has greater intrinsic contrast, spatial, and temporal resolution. The functional information obtained is comparable to renal scintigraphy but with the important distinction that anatomic images allow the signal originating from the renal parenchyma to be separated from those originating in the collecting system. As a result, the analysis of signal intensity versus time changes in the renal parenchyma can be isolated from those occurring in the collecting system.


  1. Aaronson IA (1980) Compensated obstruction of the renal pelvis. Br J Urol 52:79–83CrossRefPubMedGoogle Scholar
  2. Abdalati H, Bulas DI, Sivit CJ et al (1994) Blunt renal trauma in children: healing of renal injuries and recommendations for imaging follow-up. Pediatr Radiol 24:573–576CrossRefPubMedGoogle Scholar
  3. Abou-El-Ghar ME, El-Diasty TA, El-Assmy AM et al (2012) Role of diffusion-weighted MRI in diagnosis of acute renal allograft dysfunction: a prospective preliminary study. Br J Radiol 85:e206–e211. doi: 10.1259/bjr/53260155 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Acharya SK, Jindal B, Yadav DK et al (2009) Retrocaval ureter: a rare cause of hydronephrosis in children. J Pediatr Surg 44:846–848. doi: 10.1016/j.jpedsurg.2008.11.053 CrossRefPubMedGoogle Scholar
  5. Adeb M, Darge K, Dillman JR et al (2013) Magnetic resonance urography in evaluation of duplicated renal collecting systems. Magn Reson Imaging Clin NA 21:717–730. doi: 10.1016/j.mric.2013.04.002 CrossRefGoogle Scholar
  6. Albert TSE, Akahane M, Parienty I et al (2015) An international multicenter comparison of time-SLIP unenhanced MR angiography and contrast-enhanced CT angiography for assessing renal artery stenosis: the renal artery contrast-free trial. Am J Roentgenol 204:182–188. doi: 10.2214/AJR.13.12022 CrossRefGoogle Scholar
  7. Altun E, Martin DR, Wertman R et al (2009) Nephrogenic systemic fibrosis: change in incidence following a switch in gadolinium agents and adoption of a gadolinium policy—report from Two U.S. Universities 1. Radiology 253:689–696. doi: 10.1148/radiol.2533090649 CrossRefPubMedGoogle Scholar
  8. Amarante J, Anderson PJ, Gordon I (2003) Impaired drainage on diuretic renography using half-time or pelvic excretion efficiency is not a sign of obstruction in children with a prenatal diagnosis of unilateral renal pelvic dilatation. J Urol 169:1828–1831. doi: 10.1097/01.ju.0000062640.46274.21 CrossRefPubMedGoogle Scholar
  9. Amerstorfer EE, Haberlik A, Riccabona M (2015) Imaging assessment of renal injuries in children and adolescents: CT or ultrasound? J Pediatr Surg 50:448–455. doi: 10.1016/j.jpedsurg.2014.07.006 CrossRefPubMedGoogle Scholar
  10. Anigstein R, Elkin M, Roland P, Schulz RJ (1972) The obstructive nephrogram--microradiographic studies. Invest Radiol 7:24–32CrossRefPubMedGoogle Scholar
  11. Annet L, Hermoye L, Peeters F et al (2004) Glomerular filtration rate: assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney. J Magn Reson Imaging 20:843–849. doi: 10.1002/jmri.20173 CrossRefPubMedGoogle Scholar
  12. Arena S, Magno C, Montalto AS et al (2012) Long-term follow-up of neonatally diagnosed primary megaureter: rate and predictors of spontaneous resolution. Scand J Urol Nephrol 46:201–207. doi: 10.3109/00365599.2012.662695 CrossRefPubMedGoogle Scholar
  13. Arlen AM, Kirsch AJ, Cuda SP et al (2014) Magnetic resonance urography for diagnosis of pediatric ureteral stricture. J Pediatr Urol 10:1–7. doi: 10.1016/j.jpurol.2014.01.004 CrossRefGoogle Scholar
  14. Arthurs OJ, Edwards AD, Joubert I et al (2013) Interactive magnetic resonance imaging for paediatric vesicoureteric reflux (VUR). Eur J Radiol 82:e112–e119. doi: 10.1016/j.ejrad.2012.10.024 CrossRefPubMedGoogle Scholar
  15. Artunc F, Yildiz S, Rossi C et al (2010) Simultaneous evaluation of renal morphology and function in live kidney donors using dynamic magnetic resonance imaging. Nephrol Dial Transplant 25:1986–1991. doi: 10.1093/ndt/gfp772 CrossRefPubMedGoogle Scholar
  16. Avni FE, Nicaise N, Hall M et al (2001) The role of MR imaging for the assessment of complicated duplex kidneys in children: preliminary report. Pediatr Radiol 31:215–223CrossRefPubMedGoogle Scholar
  17. Bakker J, Olree M, Kaatee R et al (1999) Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging. Radiology 211:623–628. doi: 10.1148/radiology.211.3.r99jn19623 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Barker AP, Soundappan SVS (2004) Retrocaval ureter in children: a report of two cases. Ped Surg Int 20:158–160. doi: 10.1007/s00383-003-1038-x CrossRefGoogle Scholar
  19. Baughman SM, Richardson RR, Podberesky DJ et al (2007) 3-Dimensional magnetic resonance genitography: a different look at cloacal malformations. J Urol 178:1675–1678. doi: 10.1016/j.juro.2007.03.196; discussion 1678–1679CrossRefPubMedGoogle Scholar
  20. Becker A, Baum M (2006) Obstructive uropathy. Early Hum Dev 82:15–22. doi: 10.1016/j.earlhumdev.2005.11.002 CrossRefPubMedGoogle Scholar
  21. Behr SC, Courtier JL, Qayyum A (2012) Imaging of Müllerian duct anomalies. RadioGraphics 32:E233–E250. doi: 10.1148/rg.326125515 CrossRefPubMedGoogle Scholar
  22. Berrocal T, López-Pereira P, Arjonilla A, Gutiérrez J (2002) Anomalies of the distal ureter, bladder, and urethra in children: embryologic, radiologic, and pathologic features. RadioGraphics 22:1139–1164CrossRefPubMedGoogle Scholar
  23. Bhat GS, Maregowda S, Jayaram S, Siddappa S (2012) Health outcomes research. Urology 79:321–325. doi: 10.1016/j.urology.2011.10.018 CrossRefPubMedGoogle Scholar
  24. Blake J, Rosenblum ND (2014) Renal branching morphogenesis: morphogenetic and signaling mechanisms. Semin Cell Develop Biol 36:2–12. doi: 10.1016/j.semcdb.2014.07.011 CrossRefGoogle Scholar
  25. Bohnenpoll T, Kispert A (2014) Ureter growth and differentiation. Semin Cell Develop Biol 36:21–30. doi: 10.1016/j.semcdb.2014.07.014 CrossRefGoogle Scholar
  26. Bokacheva L, Rusinek H, Zhang JL, Lee VS (2008) Assessment of renal function with dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am 16:597–611. doi: 10.1016/j.mric.2008.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bokacheva L, Rusinek H, Zhang JL et al (2009) Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J Magn Reson Imaging 29:371–382. doi: 10.1002/jmri.21642 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bonsib SM (2010) The classification of renal cystic diseases and other congenital malformations of the kidney and urinary tract. Arch Pathol Lab Med 134:554–568PubMedGoogle Scholar
  29. Boss A, Martirosian P, Fuchs J et al (2014) Dynamic MR urography in children with uropathic disease with a combined 2D and 3D acquisition protocol—comparison with MAG3 scintigraphy. Br J Radiol 87:20140426. doi: 10.1259/bjr.20140426 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Brenes LG, Forlano H, Koutouratsas N, Stauffer HM (1966) Mechanism of the nephrographic effect during urinary stasis. Acta Radiol Diagn (Stockh) 4:14–20CrossRefGoogle Scholar
  31. Brisse HJ, Smets AM, Kaste SC, Owens CM (2008) Imaging in unilateral Wilms tumour. Pediatr Radiol 38:18–29. doi: 10.1007/s00247-007-0677-9 CrossRefPubMedGoogle Scholar
  32. Brown SC, Upsdell SM, O’Reilly PH (1992) The importance of renal function in the interpretation of diuresis renography. Br J Urol 69:121–125CrossRefPubMedGoogle Scholar
  33. Bruno S (2004) Transplant renal artery stenosis. J Am Soc Nephrol 15:134–141. doi: 10.1097/01.ASN.0000099379.61001.F8 CrossRefPubMedGoogle Scholar
  34. Buckley JC, McAninch JW (2004) Pediatric renal injuries: management guidelines from a 25-year experience. JURO 172:687–690. doi: 10.1097/01.ju.0000129316.42953.76 CrossRefGoogle Scholar
  35. Buckley JC, McAninch JW (2006) The diagnosis, management, and outcomes of pediatric renal injuries. Urol Clin NA 33:33–vi. doi: 10.1016/j.ucl.2005.11.001 CrossRefGoogle Scholar
  36. Buckley DL, Shurrab AE, Cheung CM et al (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123. doi: 10.1002/jmri.20699 CrossRefPubMedGoogle Scholar
  37. Cain JEJ, Di Giovanni VV, Smeeton JJ, Rosenblum NDN (2010) Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment. Pediatr Res 68:91–98. doi: 10.1203/PDR.0b013e3181e35a88 CrossRefPubMedGoogle Scholar
  38. Castagnetti M, Novara G, Beniamin F et al (2008) Scintigraphic renal function after unilateral pyeloplasty in children: a systematic review. BJU Int 102:862–868. doi: 10.1111/j.1464-410X.2008.07597.x CrossRefPubMedGoogle Scholar
  39. Cerwinka WH, Grattan-Smith JD, Jones RA et al (2014) Comparison of magnetic resonance urography to dimercaptosuccinic acid scan for the identification of renal parenchyma defects in children with vesicoureteral reflux. J Pediatr Urol 10:344–351. doi: 10.1016/j.jpurol.2013.09.016 CrossRefPubMedGoogle Scholar
  40. Chertin B, Pollack A, Koulikov D et al (2006) Conservative treatment of ureteropelvic junction obstruction in children with antenatal diagnosis of hydronephrosis: lessons learned after 16 years of follow-up. Eur Urol 49:734–739. doi: 10.1016/j.eururo.2006.01.046 CrossRefPubMedGoogle Scholar
  41. Chevalier RL (2007) Chronic partial ureteral obstruction and the developing kidney. Pediatr Radiol 38:35–40. doi: 10.1007/s00247-007-0585-z CrossRefGoogle Scholar
  42. Chevalier RL (2009) When is one kidney not enough? Kidney Int 76:475–477. doi: 10.1038/ki.2009.244 CrossRefPubMedGoogle Scholar
  43. Chevalier RL, Thornhill BA, Forbes MS, Kiley SC (2010) Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr Nephrol 25:687–697. doi: 10.1007/s00467-009-1316-5 CrossRefPubMedGoogle Scholar
  44. Chuck NC, Steidle G, Blume I et al (2013) Diffusion tensor imaging of the kidneys: influence of b-value and number of encoding directions on image quality and diffusion tensor parameters. Clin Imaging Sci 2013(3):53CrossRefPubMedPubMedCentralGoogle Scholar
  45. Chung CHS, Chin ACW, Szeto PS et al. (2008). Magnetic resonance imaging for ureteral fibroepithelial polyp. Hong King Med J 2008;14:408–10Google Scholar
  46. Claudon M, Durand E, Grenier N et al (2014) Chronic urinary obstruction: evaluation of dynamic contrast-enhanced MR urography for measurement of split renal function. Radiology 273:801–812. doi: 10.1148/radiol.14131819 CrossRefPubMedGoogle Scholar
  47. Csaicsich D, Greenbaum LA, Aufricht C (2004) Upper urinary tract: when is obstruction obstruction? Curr Opin Urol 14:213–217. doi: 10.1097/01.mou.0000135075.19968.d9 CrossRefPubMedGoogle Scholar
  48. Dally EA, Raman A, Webb NR, Farnsworth RH (2011) Unilateral multicystic dysplastic kidney with progressive infundibular stenosis in the contralateral kidney: experience at 1 center and review of literature. JURO 186:1053–1058. doi: 10.1016/j.juro.2011.05.001 CrossRefGoogle Scholar
  49. Darge K, Grattan-Smith JD, Riccabona M (2010) Pediatric uroradiology: state of the art. Pediatr Radiol 41:82–91. doi: 10.1007/s00247-010-1644-4 CrossRefPubMedGoogle Scholar
  50. Davies P (1988) Obstructive uropathy. BMJ 297:68–68CrossRefPubMedPubMedCentralGoogle Scholar
  51. Davies P, Price H (1980) The urographic signs of acute on chronic obstruction of the kidney. Clin Radiol 31:205–213. doi: 10.1016/S0009-9260(80)80163-2 CrossRefPubMedGoogle Scholar
  52. Dawson P (1990) Intravenous urography revisited. Br J Urol 66:561–567CrossRefPubMedGoogle Scholar
  53. De Pascale A, Piccoli GB, Priola SM et al (2013) Diffusion-weighted magnetic resonance imaging: new perspectives in the diagnostic pathway of non-complicated acute pyelonephritis. Eur Radiol 23:3077–3086. doi: 10.1007/s00330-013-2906-y CrossRefPubMedGoogle Scholar
  54. Duong HP, Piepsz A, Collier F et al (2013) Pediatric urology predicting the clinical outcome of antenatally detected unilateral pelviureteric junction stenosis. URL 82:691–696. doi: 10.1016/j.urology.2013.03.041 CrossRefGoogle Scholar
  55. Durand E (2014) Comparison of magnetic resonance imaging with radionuclide methods of evaluating the kidney. Semin Nucl Med 44:82–92. doi: 10.1053/j.semnuclmed.2013.10.003 CrossRefPubMedGoogle Scholar
  56. Dyer RB, Munitz HA, Bechtold R, Choplin RH (1986) The abnormal nephrogram. RadioGraphics 6:1039–1063CrossRefPubMedGoogle Scholar
  57. Eassa W, El-Ghar MA, Jednak R, El-Sherbiny M (2010) Nonoperative management of grade 5 renal injury in children: does it have a place? Eur Urol 57:154–163. doi: 10.1016/j.eururo.2009.02.001 CrossRefPubMedGoogle Scholar
  58. Ehammer T, Riccabona M, Maier E (2011) High resolution MR for evaluation of lower urogenital tract malformations in infants and children: feasibility and preliminary experiences. Eur J Radiol 78:388–393. doi: 10.1016/j.ejrad.2010.01.006 CrossRefPubMedGoogle Scholar
  59. Eisenberger U, Thoeny HC, Binser T et al (2009) Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 20:1374–1383. doi: 10.1007/s00330-009-1679-9 CrossRefPubMedGoogle Scholar
  60. Elder JS, Stansbrey R, Dahms BB, Selzman AA (1995) Renal histological changes secondary to ureteropelvic junction obstruction. J Urol 154:719–722CrossRefPubMedGoogle Scholar
  61. Erbay G, Koc Z, Karadeli E et al (2012) Evaluation of malignant and benign renal lesions using diffusion-weighted MRI with multiple b values. Acta Radiol 53:359–365CrossRefPubMedGoogle Scholar
  62. Esfahani SA, Kajbafzadeh A-M, Beigi RS et al (2011) Precise delineation of ureterocele anatomy: virtual magnetic resonance cystoscopy. Abdom Imaging 36:765–770. doi: 10.1007/s00261-011-9695-z CrossRefPubMedGoogle Scholar
  63. Eskildjensen A, Gordon I, Piepsz A, Frokiar J (2005) Congenital unilateral hydronephrosis: a review of the impact of diuretic renography on clinical treatment. J Urol 173:1471–1476. doi: 10.1097/01.ju.0000157384.32215.fe CrossRefGoogle Scholar
  64. Faletti R, Cassinis MC, Fonio P et al (2013) Diffusion–weighted imaging and apparent diffusion coefficient values versus contrast–enhanced mr imaging in the identification and characterisation of acute pyelonephritis. Eur Radiol 23:3501–3508. doi: 10.1007/s00330-013-2951-6 CrossRefPubMedGoogle Scholar
  65. Farrugia M-K, Hitchcock R, Radford A et al (2014) British Association of Paediatric Urologists consensus statement on the management of the primary obstructive megaureter. J Pediatr Urol 10:26–33. doi: 10.1016/j.jpurol.2013.09.018 CrossRefPubMedGoogle Scholar
  66. Figueroa VH, Chavhan GB, Oudjhane K, FARHAT W (2014) Utility of MR urography in children suspected of having ectopic ureter. Pediatr Radiol 44:956–962. doi: 10.1007/s00247-014-2905-4 CrossRefPubMedGoogle Scholar
  67. Gaddikeri S, Mitsumori L, Vaidya S et al (2014) Comparing the diagnostic accuracy of contrast-enhanced computed tomographic angiography and gadolinium-enhanced magnetic resonance angiography for the assessment of hemodynamically significant transplant renal artery stenosis. Curr Probl Diagn Radiol 43:162–168. doi: 10.1067/j.cpradiol.2014.03.001 CrossRefPubMedGoogle Scholar
  68. Gardener AG, Francis ST (2010) Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Magn Reson Med 63:1627–1636. doi: 10.1002/mrm.22387 CrossRefPubMedGoogle Scholar
  69. Gee MS, Bittman M, Epelman M et al (2013) Magnetic resonance imaging of the pediatric kidney. Magn Reson Imaging Clin NA 21:697–715. doi: 10.1016/j.mric.2013.06.001 CrossRefGoogle Scholar
  70. Geller E, Kochan PS (2011) Renal neoplasms of childhood. Radiol Clin NA 49:689–709. doi: 10.1016/j.rcl.2011.05.003 CrossRefGoogle Scholar
  71. Gimpel C, Masioniene L, Djakovic N et al (2010) Complications and long-term outcome of primary obstructive megaureter in childhood. Pediatr Nephrol 25:1679–1686. doi: 10.1007/s00467-010-1523-0 CrossRefPubMedGoogle Scholar
  72. Glassberg KI (2002) Normal and abnormal development of the kidney: a clinician’s interpretation of current knowledge. JURO 167:2339–2331Google Scholar
  73. González PAL, Cubillana PL, Pastor GS et al (2011) Retrocaval ureter in children. Case report and bibliographic review. Arch Esp Urol 64:461–464Google Scholar
  74. Gordon I (2001) Diuretic renography in infants with prenatal unilateral hydronephrosis: an explanation for the controversy about poor drainage. BJU Int 87:551–555. doi: 10.1046/j.1464-410X.2001.00081.x CrossRefPubMedGoogle Scholar
  75. Grattan-Smith JD, Jones RA (2008) MR urography: technique and results for the evaluation of urinary obstruction in the pediatric population. Magn Reson Imaging Clin N Am 16:643–660, viii–ix. doi: 10.1016/j.mric.2008.07.003 CrossRefPubMedGoogle Scholar
  76. Grattan-Smith JD, Perez-Bayfield MR, Jones RA et al (2003) MR imaging of kidneys: functional evaluation using F-15 perfusion imaging. Pediatr Radiol 33:293–304. doi: 10.1007/s00247-003-0896-7 CrossRefPubMedGoogle Scholar
  77. Grattan-Smith JD, Little SB, Jones RA (2007) Evaluation of reflux nephropathy, pyelonephritis and renal dysplasia. Pediatr Radiol 38:83–105. doi: 10.1007/s00247-007-0668-x CrossRefGoogle Scholar
  78. Grattan-Smith JD, Jones RA, Little S, Kirsch AJ (2010) Bilateral congenital midureteric strictures associated with multicystic dysplastic kidney and hydronephrosis: evaluation with MR urography. Pediatr Radiol 41:117–120. doi: 10.1007/s00247-010-1799-z CrossRefPubMedGoogle Scholar
  79. Greenbaum LA (2007) Renal dysplasia and MRI: a clinician’s perspective. Pediatr Radiol 38:70–75. doi: 10.1007/s00247-007-0586-y CrossRefGoogle Scholar
  80. Grinspon RP, Rey RA (2014) When hormone defects cannot explain it: malformative disorders of sex development. Birth Defect Res C 102:359–373. doi: 10.1002/bdrc.21086 CrossRefGoogle Scholar
  81. Grobner T (2006) Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108. doi: 10.1093/ndt/gfk062 CrossRefPubMedGoogle Scholar
  82. Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging 18:714–725. doi: 10.1002/jmri.10410 CrossRefPubMedGoogle Scholar
  83. Hackstein N, Kooijman H, Tomaselli S, Rau WS (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imaging 22:406–414. doi: 10.1002/jmri.20401 CrossRefPubMedGoogle Scholar
  84. Hall-Craggs MA, Kirkham A, Creighton SM (2013a) Renal and urological abnormalities occurring with Mullerian anomalies. J Pediatr Urol 9:27–32. doi: 10.1016/j.jpurol.2011.11.003 CrossRefPubMedGoogle Scholar
  85. Hall-Craggs MA, Williams CE, Pattison SH et al (2013b) Mayer-Rokitansky-Kuster-Hauser syndrome: diagnosis with MR imaging. Radiology 269:787–792. doi: 10.1148/radiol.13130211 CrossRefPubMedGoogle Scholar
  86. Hammond NA, Lostumbo A, Adam SZ et al (2015) Imaging of adrenal and renal hemorrhage. Abdom Imaging 40:1–14. doi: 10.1007/s00261-015-0453-5 CrossRefGoogle Scholar
  87. Harper L, Bourquard D, Grosos C et al (2013) Cortical transit time as a predictive marker of the need for surgery in children with pelvi-ureteric junction stenosis: preliminary study. J Pediatr Urol 9:1054–1058. doi: 10.1016/j.jpurol.2013.03.002 CrossRefPubMedGoogle Scholar
  88. Harraz AM, Helmy T, Taha D-E et al (2013) Changes in differential renal function after pyeloplasty in children. J Urol 190:1468–1473. doi: 10.1016/j.juro.2013.01.004 CrossRefPubMedGoogle Scholar
  89. Hashim H, Woodhouse CRJ (2012) Ureteropelvic junction obstruction. Eur Urol Suppl 11:25–32. doi: 10.1016/j.eursup.2012.01.004 CrossRefGoogle Scholar
  90. Hekmatnia A, Merrikhi A, Farghadani M et al (2013) Diagnostic accuracy of magnetic resonance voiding cystourethrography for detecting vesico-ureteral reflux in children and adolescents. J Res Med Sci 18:31–36PubMedPubMedCentralGoogle Scholar
  91. Heuer R, Sommer G, Shortliffe LD (2003) Evaluation of renal growth by magnetic resonance imaging and computerized tomography volumes. J Urol 170:1659–1663. doi: 10.1097/01.ju.0000085676.76111.27 CrossRefPubMedGoogle Scholar
  92. Hodges SJ, Werle D, McLorie G, Atala A (2010) Megaureter. Scientific World J 10:603–612. doi: 10.1100/tsw.2010.54 CrossRefGoogle Scholar
  93. Huang AJ, Lee VS, Rusinek H (2004) Functional renal MR imaging. Magn Reson Imaging Clin N Am 12:469–486. doi: 10.1016/j.mric.2004.04.001 CrossRefPubMedGoogle Scholar
  94. Huang W-Y, Peters CA, Zurakowski D et al (2006) Renal biopsy in congenital ureteropelvic junction obstruction: evidence for parenchymal maldevelopment. Kidney Int 69:137–143. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  95. Hughes IA (2002) Intersex. BJU Int 90:769–776. doi: 10.1046/j.1464-410X.2002.02920.x CrossRefPubMedGoogle Scholar
  96. Hwang AH, McAleer IM, Shapiro E et al (2005) Congenital mid ureteral strictures. J Urol 174:1999–2002. doi: 10.1097/01.ju.0000176462.56473.0c CrossRefPubMedGoogle Scholar
  97. Ichikawa S, Motosugi U, Ichikawa T et al (2013) Intravoxel incoherent motion imaging of the kidney: alterations in diffusion and perfusion in patients with renal dysfunction. Magn Reson Imaging 31:414–417. doi: 10.1016/j.mri.2012.08.004 CrossRefPubMedGoogle Scholar
  98. Ismaili K, Piepsz A (2013) The antenatally detected pelvi-ureteric junction stenosis: advances in renography and strategy of management. Pediatr Radiol 43:428–435. doi: 10.1007/s00247-012-2505-0 CrossRefPubMedGoogle Scholar
  99. Itoh K (2001) 99mTc-MAG3: review of pharmacokinetics, clinical application to renal diseases and quantification of renal function. Ann Nucl Med 15:179–190. doi: 10.1007/BF02987829 CrossRefPubMedGoogle Scholar
  100. Jaramillo D, Lebowitz RL, Hendren WH (1990) The cloacal malformation: radiologic findings and imaging recommendations. Radiology 177:441–448. doi: 10.1148/radiology.177.2.2217782 CrossRefPubMedGoogle Scholar
  101. Jarboe MD, Teitelbaum DH, Dillman JR (2012) Combined 3D rotational fluoroscopic-MRI cloacagram procedure defines luminal and extraluminal pelvic anatomy prior to surgical reconstruction of cloacal and other complex pelvic malformations. Ped Surg Int 28:757–763. doi: 10.1007/s00383-012-3122-6 CrossRefGoogle Scholar
  102. Johnin K, Takazakura R, Furukawa A et al (2013) Magnetic resonance voiding cystourethrography (MRVCUG): a potential alternative to standard VCUG. J Magn Reson Imaging 38:897–904. doi: 10.1002/jmri.24052 CrossRefPubMedGoogle Scholar
  103. Jones RA, PEREZ-BRAYFIELD MR, Kirsch AJ, Grattan-Smith JD (2004) Renal transit time with MR urography in children1. Radiology 233:41–50. doi: 10.1148/radiol.2331031117 CrossRefPubMedGoogle Scholar
  104. Jones RA, Easley K, Little SB et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part 1, functional assessment. Am J Roentgenol 185:1598–1607. doi: 10.2214/AJR.04.1540 CrossRefGoogle Scholar
  105. Jones RA, Grattan-Smith JD, Little S (2011) Pediatric magnetic resonance urography. J Magn Reson Imaging 33:510–526. doi: 10.1002/jmri.22474 CrossRefPubMedGoogle Scholar
  106. Junqueira BLP, Allen LM, Spitzer RF et al (2009) Müllerian duct anomalies and mimics in children and adolescents: correlative intraoperative assessment with clinical imaging1. RadioGraphics 29:1085–1103. doi: 10.1148/rg.294085737 CrossRefPubMedGoogle Scholar
  107. Kalisvaart J, Bootwala Y, Poonawala H et al (2011) Comparison of ultrasound and magnetic resonance urography for evaluation of contralateral kidney in patients with multicystic dysplastic kidney disease. JURO 186:1059–1064. doi: 10.1016/j.juro.2011.04.105 CrossRefGoogle Scholar
  108. Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841. doi: 10.1148/radiol.13131669 CrossRefPubMedGoogle Scholar
  109. Kanda T, Fukusato T, Matsuda M et al (2015a) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232. doi: 10.1148/radiol.2015142690 CrossRefPubMedGoogle Scholar
  110. Kanda T, Osawa M, Oba H et al (2015b) High signal intensity in dentate nucleus on unenhanced T1-weighted mr images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809. doi: 10.1148/radiol.14140364 CrossRefPubMedGoogle Scholar
  111. Kaneyama K, Yamataka A, Someya T et al (2006) Magnetic resonance urographic parameters for predicting the need for pyeloplasty in infants with prenatally diagnosed severe hydronephrosis. J Urol 176:1781–1785. doi: 10.1016/j.juro.2006.03.122 CrossRefPubMedGoogle Scholar
  112. Kara T, Acu B, Beyhan M, Gokce E (2012) Magnetic resonance imaging in diagnosis of the mayer-rokitansky-kuster-hauser syndrome. Diagn Interv Radiol. doi: 10.4261/1305-3825.DIR.6341-12.1 CrossRefGoogle Scholar
  113. Kavanagh EC, Ryan S, Awan A et al (2005) Can MRI replace DMSA in the detection of renal parenchymal defects in children with urinary tract infections? Pediatr Radiol 35:275–281. doi: 10.1007/s00247-004-1335-0 CrossRefPubMedGoogle Scholar
  114. Keller MS, Eric Coln C, Garza JJ et al (2004) Functional outcome of nonoperatively managed renal injuries in children. J Trauma Injury Infect Crit Care 57:108–110. doi: 10.1097/01.TA.0000133627.75366.CA CrossRefGoogle Scholar
  115. Kembhavi SA, Qureshi S, Vora T et al (2013) Understanding the principles in management of Wilms. Clin Radiol 68:646–653. doi: 10.1016/j.crad.2012.11.012 CrossRefPubMedGoogle Scholar
  116. Khrichenko D, Darge K (2009) Functional analysis in MR urography – made simple. Pediatr Radiol. doi: 10.1007/s00247-009-1458-4 CrossRefPubMedGoogle Scholar
  117. King LR (1980) Megaloureter: definition, diagnosis and management. JURO 123:222–223Google Scholar
  118. Kirsch AJ, McMann LP, Jones RA et al (2006) Magnetic resonance urography for evaluating outcomes after pediatric pyeloplasty. J Urol 176:1755–1761. doi: 10.1016/j.juro.2006.03.115 CrossRefPubMedGoogle Scholar
  119. Klein J, Gonzalez J, Miravete M et al (2010) Congenital ureteropelvic junction obstruction: human disease and animal models. Int J Exp Pathol 92:168–192. doi: 10.1111/j.1365-2613.2010.00727.x CrossRefPubMedGoogle Scholar
  120. Koff SA (2007) Requirements for accurately diagnosing chronic partial upper urinary tract obstruction in children with hydronephrosis. Pediatr Radiol 38:41–48. doi: 10.1007/s00247-007-0590-2 CrossRefGoogle Scholar
  121. Korobkin M (1972) Physiology and significance of the prolonged nephrogram. Calif Med 117:55–56PubMedPubMedCentralGoogle Scholar
  122. Krepkin K, Won E, Ramaswamy K et al (2014) Dynamic contrast-enhanced MR renography for renal function evaluation in ureteropelvic junction obstruction: feasibility study. Am J Roentgenol 202:778–783. doi: 10.2214/AJR.13.11321 CrossRefGoogle Scholar
  123. Lankadeva YR, Singh RR, Tare M et al (2014) Loss of a kidney during fetal life: long-term consequences and lessons learned. AJP: Renal Physiol 306:F791–F800. doi: 10.1152/ajprenal.00666.2013 CrossRefGoogle Scholar
  124. Le Bihan D (2013) Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 268:318–322. doi: 10.1148/radiol.13130420 CrossRefPubMedGoogle Scholar
  125. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407. doi: 10.1148/radiology.161.2.3763909 CrossRefPubMedGoogle Scholar
  126. Lee VS, Rusinek H, Noz ME et al (2003) Dynamic three-dimensional mr renography for the measurement of single kidney function: initial experience1. Radiology 227:289–294. doi: 10.1148/radiol.2271020383 CrossRefPubMedGoogle Scholar
  127. Little SB, Jones RA, Grattan-Smith JD (2007) Evaluation of UPJ obstruction before and after pyeloplasty using MR urography. Pediatr Radiol 38:106–124. doi: 10.1007/s00247-007-0669-9 CrossRefGoogle Scholar
  128. Liu G, Han F, Xiao W et al (2014) Detection of renal allograft rejection using blood oxygen level-dependent and diffusion weighted magnetic resonance imaging: a retrospective study. BMC Nephrol 15:158. doi: 10.1007/s11547-008-0248-7 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Lonergan GJ, Martínez-León MI, Agrons GA et al (1998) Nephrogenic rests, nephroblastomatosis, and associated lesions of the kidney. RadioGraphics 18:947–968CrossRefPubMedGoogle Scholar
  130. Lucaya J, Enriquez G, Delgado R, Castellote A (1984) Infundibulopelvic stenosis in children. AJR Am J Roentgenol 142:471–474. doi: 10.2214/ajr.142.3.471 CrossRefPubMedGoogle Scholar
  131. Mackie GG, Stephens FD (1975) Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. JURO 114:274–280Google Scholar
  132. Mansour SM, Hamed ST, Adel L et al (2012) Does MRI add to ultrasound in the assessment of disorders of sex development? Eur J Radiol 81:2403–2410. doi: 10.1016/j.ejrad.2011.12.036 CrossRefPubMedGoogle Scholar
  133. Marcal L, Nothaft MA, Coelho F et al (2011) Mullerian duct anomalies: MR imaging. Abdom Imaging 36:756–764. doi: 10.1007/s00261-010-9681-x CrossRefPubMedGoogle Scholar
  134. Marckmann P (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17:2359–2362. doi: 10.1681/ASN.2006060601 CrossRefPubMedGoogle Scholar
  135. Martin DR, Sharma P, Salman K et al (2008) Individual kidney blood flow measured with contrast-enhanced first-pass perfusion MR imaging. Radiology 246:241–248. doi: 10.1148/radiol.2461062129 CrossRefPubMedGoogle Scholar
  136. Martina MC, Campanino PP, Caraffo F et al (2010) Dynamic magnetic resonance imaging in acute pyelonephritis. Radiol Med 115:287–300. doi: 10.1007/s11547-009-0468-5 CrossRefPubMedGoogle Scholar
  137. Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361. doi: 10.1002/mrm.10709 CrossRefPubMedGoogle Scholar
  138. McDonald K, Duffy P, Chowdhury T, McHugh K (2013) Added value of abdominal cross-sectional imaging (CT or MRI) in staging of Wilms. Clin Radiol 68:16–20. doi: 10.1016/j.crad.2012.05.006 CrossRefPubMedGoogle Scholar
  139. McMann LP, Kirsch AJ, Scherz HC et al (2006) Magnetic resonance urography in the evaluation of prenatally diagnosed hydronephrosis and renal dysgenesis. J Urol 176:1786–1792. doi: 10.1016/j.juro.2006.05.025 CrossRefPubMedGoogle Scholar
  140. Miyazaki Y, Ichikawa I (2003) Ontogeny of congenital anomalies of the kidney and urinary tract, CAKUT. Pediatr Int 45:598–604. doi: 10.1046/j.1442-200X.2003.01777.x CrossRefPubMedGoogle Scholar
  141. Niu ZB, Yang Y, Hou Y et al (2007) Ureteral polyps: an etiological factor of hydronephrosis in children that should not be ignored. Ped Surg Int 23:323–326. doi: 10.1007/s00383-007-1884-z CrossRefGoogle Scholar
  142. Nixon JN, Biyyam DR, Stanescu L et al (2013) Imaging of pediatric renal transplants and their complications: a pictorial review. RadioGraphics 33:1227–1251. doi: 10.1148/rg.335125150 CrossRefPubMedGoogle Scholar
  143. Nurzia MJ, Costantinescu AR, Barone JG (2002) Childhood infundibular stenosis. Urology 60:344–344. doi: 10.1016/S0090-4295(02)01714-4 CrossRefPubMedGoogle Scholar
  144. O’Reilly PH (1982) Role of modern radiological investigations in obstructive uropathy. Br Med J (Clin Res Ed) 284:1847–1851CrossRefGoogle Scholar
  145. O’Reilly PH (2002) Obstructive uropathy. The quarterly journal of nuclear medicine: official publication of the Italian Association of Nuclear Medicine (AIMN)[and] the International Association of Radiopharmacology (IAR) 46:295–303Google Scholar
  146. Patel UD (2014) Outcomes after pediatric kidney transplantation improving: how can we do even better? Pediatrics 133:734–735. doi: 10.1542/peds.2014-0124 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Patheyar V, Venkatesh SK, Siew E et al (2011) MR imaging features of fibroepithelial ureteral polyp in a patient with duplicated upper urinary tract. Singapore Med J 52:e45–e47PubMedGoogle Scholar
  148. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations J Cereb Blood Flow Metab 5:584–590. doi: 10.1038/jcbfm.1985.87 CrossRefPubMedGoogle Scholar
  149. Pedersen M, Shi Y, Anderson P et al (2004) Quantitation of differential renal blood flow and renal function using dynamic contrast-enhanced MRI in rats. Magn Reson Med 51:510–517. doi: 10.1002/mrm.10711 CrossRefPubMedGoogle Scholar
  150. Pekar J, Moonen CT, van Zijl PC (1992) On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med 23:122–129. doi: 10.1002/mrm.1910230113 CrossRefPubMedGoogle Scholar
  151. Perez-Brayfield MR, Kirsch AJ, Jones RA, Grattan-Smith JD (2003) A prospective study comparing ultrasound, nuclear scintigraphy and dynamic contrast enhanced magnetic resonance imaging in the evaluation of hydronephrosis. J Urol 170:1330–1334. doi: 10.1097/01.ju.0000086775.66329.00 CrossRefPubMedGoogle Scholar
  152. Peruzzi L (2014) Challenges in pediatric renal transplantation. WJT 4:222. doi: 10.5500/wjt.v4.i4.222 CrossRefPubMedGoogle Scholar
  153. Peters AM (1994) Graphical analysis of dynamic data: the Patlak-Rutland plot. Nucl Med Commun 15:669–672CrossRefPubMedGoogle Scholar
  154. Peters CA, Chevalier RL (2012) Chapter 113 – Congenital urinary obstruction: pathophysiology and clinical evaluation, 10th edn. Elsevier Inc., Philadelphia. Google Scholar
  155. Piepsz A (2007) Antenatally detected hydronephrosis. Semin Nucl Med 37:249–260. doi: 10.1053/j.semnuclmed.2007.02.008 CrossRefPubMedGoogle Scholar
  156. Piepsz A (2011) Antenatal detection of pelviureteric junction stenosis: main controversies. Semin Nucl Med 41:11–19. doi: 10.1053/j.semnuclmed.2010.07.008 CrossRefPubMedGoogle Scholar
  157. Piepsz A, Tondeur M, Nogarède C et al (2011) Can severely impaired cortical transit predict which children with pelvi-ureteric junction stenosis detected antenatally might benefit from pyeloplasty? Nucl Med Commun 32:199–205. doi: 10.1097/MNM.0b013e328340c586 CrossRefPubMedGoogle Scholar
  158. Pieretti-Vanmarcke R, Pieretti A, Pieretti RV (2008) Megacalycosis: a rare condition. Pediatr Nephrol 24:1077–1079. doi: 10.1007/s00467-008-1039-z CrossRefPubMedGoogle Scholar
  159. Podberesky DJ, Towbin AJ, Eltomey MA, Levitt MA (2013) Magnetic resonance imaging of anorectal malformations. Magn Reson Imaging Clin NA 21:791–812. doi: 10.1016/j.mric.2013.04.010 CrossRefGoogle Scholar
  160. Pohl HG, Rushton HG, Park JS et al (2001) Early diuresis renogram findings predict success following pyeloplasty. J Urol 165:2311–2315CrossRefPubMedGoogle Scholar
  161. Pope JC, Brock JW, ADAMS MC et al (1999) How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol 10:2018–2028PubMedGoogle Scholar
  162. Pouliot F, Lebel MH, Audet J-F, Dujardin T (2010) Determination of success by objective scintigraphic criteria after laparoscopic pyeloplasty. J Endourol 24:299–304. doi: 10.1089/end.2009.0134 CrossRefPubMedGoogle Scholar
  163. Preibsch H, Rall K, Wietek BM et al (2014) Clinical value of magnetic resonance imaging in patients with Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: diagnosis of associated malformations, uterine rudiments and intrauterine endometrium. Eur Radiol 24:1621–1627. doi: 10.1007/s00330-014-3156-3 CrossRefPubMedGoogle Scholar
  164. Prokop M, Schneider G, Vanzulli A et al (2005) Contrast-enhanced MR Angiography of the renal arteries: blinded multicenter crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine1. Radiology 234:399–408. doi: 10.1148/radiol.2342040023 CrossRefPubMedGoogle Scholar
  165. Radbruch A, Weberling LD, Kieslich PJ et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791. doi: 10.1148/radiol.2015150337 CrossRefPubMedGoogle Scholar
  166. Ranawaka R, Hennayake S (2013) Resolution of primary non-refluxing megaureter: an observational study. J Pediatr Surg 48:380–383. doi: 10.1016/j.jpedsurg.2012.11.017 CrossRefPubMedGoogle Scholar
  167. Redman JF, Neeb AD (2005) Congenital megacalycosis: a forgotten diagnosis? Urology 65:384–385. doi: 10.1016/j.urology.2004.09.058 CrossRefPubMedGoogle Scholar
  168. Renjen P, Bellah R, Hellinger JC, Darge K (2010) Pediatric urologic advanced imaging: techniques and applications. Urol Clin NA 37(2):307–318. CrossRefPubMedGoogle Scholar
  169. Riccabona M (2010) Obstructive diseases of the urinary tract in children: lessons from the last 15 years. Pediatr Radiol 40:947–955. doi: 10.1007/s00247-010-1590-1 CrossRefPubMedGoogle Scholar
  170. Riccabona M, Avni FE, Dacher J-N et al (2010) ESPR uroradiology task force and ESUR paediatric working group: imaging and procedural recommendations in paediatric uroradiology, part III. Minutes of the ESPR uroradiology task force minisymposium on intravenous urography, uro-CT and MR-urography in childhood. Pediatr Radiol 40:1315–1320. doi: 10.1007/s00247-010-1686-7 CrossRefPubMedGoogle Scholar
  171. Riccabona M, Avni F, Dacher JN, Damasio B, Darge K, Lobo ML, Ording-Müller LS, Papado-poulou F, Vivier P, Willi U (2011) ESPR uroradiology task force and ESUR paediatric working group: imaging recommendations in paediatric uroradiology, part IV Minutes of the ESPR urora-diology task force mini-symposium on imaging in childhood renal hypertension and imaging of renal trauma in children. Pediatr Radiol 41:939–944. doi: 10.1007/s00247-011-2089-0 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Riccabona M, Avni F, Damasio B, Ordning-Mueller LS, Lobo ML, Darge K, Papadopoulou F, Willi U, Blickmann J, Vivier PH (2012) ESPR Uroradiology Task Force and ESUR Paediatric Working Group – Imaging recommendations in Paediatric Uroradiology, Part V: Childhood cystic kidney disease, childhood renal transplantation, and contrast-enhanced ultrasound in children. Pediatr Radiol 42:1275–1283. doi: 10.1007/s00247-012-2436-9 CrossRefPubMedGoogle Scholar
  173. Riccabona M, Darge K, Lobo M-L et al (2015) ESPR Uroradiology Taskforce—imaging recommendations in paediatric uroradiology, part VIII: retrograde urethrography, imaging disorder of sexual development and imaging childhood testicular torsion. Pediatr Radiol 45:2023–2028. doi: 10.1007/s00247-015-3452-3 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Ries M, Jones RA, Basseau F et al (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49. doi: 10.1002/jmri.1149 CrossRefPubMedGoogle Scholar
  175. Risdon RA (1993) The small scarred kidney in childhood. Pediatr Nephrol 7:361–364CrossRefPubMedGoogle Scholar
  176. Risdon RA, Young LW, Chrispin AR (1975) Renal hypoplasia and dysplasia: a radiological and pathological correlation. Pediatr Radiol 3:213–225CrossRefPubMedGoogle Scholar
  177. Robson PM, Madhuranthakam AJ, Dai W et al (2009) Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling. Magn Reson Med 61:1374–1387. doi: 10.1002/mrm.21960 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Rodriguez MM (2014) Congenital anomalies of the kidney and the urinary tract (CAKUT). Fetal Pediatr Pathol 33:293–320. doi: 10.3109/15513815.2014.959678 CrossRefPubMedPubMedCentralGoogle Scholar
  179. Rodríguez LV, Spielman D, Herfkens RJ, Shortliffe LD (2001) Magnetic resonance imaging for the evaluation of hydronephrosis, reflux and renal scarring in children. JURO 166:1023–1027. doi: 10.1016/S0022-5347(05)65910-1 CrossRefGoogle Scholar
  180. Rosen S, Peters CA, Chevalier RL, Huang W-Y (2008) The kidney in congenital ureteropelvic junction obstruction: a spectrum from normal to nephrectomy. J Urol 179:1257–1263. doi: 10.1016/j.juro.2007.11.048 CrossRefPubMedGoogle Scholar
  181. Rusinek H, Lee VS, Johnson G (2001) Optimal dose of Gd-DTPA in dynamic MR studies. Magn Reson Med 46:312–316. doi: 10.1002/mrm.1193 CrossRefPubMedGoogle Scholar
  182. Rutland (1979): Rutland MD. A single injection technique for subtraction of blood background in 131I-hippuran renograms. Br J Radiol 1979;52:134–137Google Scholar
  183. Samin A, Becker JA (1991) CT nephrogram in acute obstructive uropathy. Urol Radiol 12:178–180CrossRefPubMedGoogle Scholar
  184. Sanna-Cherchi S, Ravani P, Corbani V et al (2009) Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 76:528–533. doi: 10.1038/ki.2009.220 CrossRefPubMedGoogle Scholar
  185. Soares dos Santos Junior AC, Marques de Miranda D, Simões e Silva AC (2014) Congenital anomalies of the kidney and urinary tract: an embryogenetic review. Birth Defect Res C. doi: 10.1002/bdrc.21084 CrossRefGoogle Scholar
  186. Santucci RA, Wessells H, Bartsch G et al (2004) Evaluation and management of renal injuries: consensus statement of the renal trauma subcommittee. BJU Int 93:937–954. doi: 10.1111/j.1464-4096.2004.04820.x CrossRefPubMedGoogle Scholar
  187. Saxton HM (1969) Review article: urography. Br J Radiol 42:321–346CrossRefPubMedGoogle Scholar
  188. Schlotmann A, Clorius JH, Clorius SN (2009) Diuretic renography in hydronephrosis: renal tissue tracer transit predicts functional course and thereby need for surgery. Eur J Nucl Med Mol Imaging 36:1665–1673. doi: 10.1007/s00259-009-1138-5 CrossRefPubMedGoogle Scholar
  189. Schreuder MF (2012) Safety in glomerular numbers. Pediatr Nephrol 27:1881–1887. doi: 10.1007/s00467-012-2169-x CrossRefPubMedPubMedCentralGoogle Scholar
  190. Sfakianakis GN, Sfakianaki E, Georgiou M et al (2009) A renal protocol for all ages and all indications: mercapto-acetyl-triglycine (MAG3) with simultaneous injection of furosemide (MAG3-F0): a 17-year experience. Semin Nucl Med 39:156–173. doi: 10.1053/j.semnuclmed.2008.11.001 CrossRefPubMedGoogle Scholar
  191. Sharfuddin A (2011) Grattan-Smith09102015. YSNEP 31:259–271. doi: 10.1016/j.semnephrol.2011.05.005 CrossRefGoogle Scholar
  192. Sharfuddin A (2014) Renal relevant radiology: imaging in kidney transplantation. Clin J Am Soc Nephrol 9:416–429. doi: 10.2215/CJN.02960313 CrossRefPubMedGoogle Scholar
  193. Sherwood T (1971) The physiology of intravenous urography. Sci Basis Med Annu Rev 336–348Google Scholar
  194. Shive ML, Baskin L, Harris C et al (2012) Ureteral fibroepithelial polyp causing urinary obstruction. Radiol Case. doi: 10.3941/jrcr.v6i7.1076 CrossRefGoogle Scholar
  195. Shokeir AA, Nijman RJM (2002) Ureterocele: an ongoing challenge in infancy and childhood. BJU Int 90:777–783. doi: 10.1046/j.1464-410X.2002.02998.x CrossRefPubMedGoogle Scholar
  196. Shokeir AA, Provoost AP, Nijman RJ (1999) Recoverability of renal function after relief of chronic partial upper urinary tract obstruction. BJU Int 83:11–17. doi: 10.1046/j.1464-410x.1999.00889.x CrossRefPubMedGoogle Scholar
  197. Shopfner CE (1964) Genitography in intersexual states. Radiology 82:664–674CrossRefPubMedGoogle Scholar
  198. Smith EA (2013) Advanced techniques in pediatric abdominopelvic oncologic magnetic resonance imaging. Magn Reson Imaging Clin NA 21:829–841. doi: 10.1016/j.mric.2013.06.002 CrossRefGoogle Scholar
  199. Smith ED, Cussen LJ, Glenn J et al (1977) Report of working party to establish an international nomenclature for the large ureter. Birth Defects Orig Artic Ser 13:3–8Google Scholar
  200. Soulez G, Pasowicz M, Benea G et al (2008) Renal artery stenosis evaluation: diagnostic performance of gadobenate dimeglumine–enhanced MR angiography—comparison with DSA 1. Radiology 247:273–285. doi: 10.1148/radiol.2471070711 CrossRefPubMedGoogle Scholar
  201. Sourbron S (2010) Compartmental modelling for magnetic resonance renography. Zeitschrift fuer Medizinische Physik 20:101–114. doi: 10.1016/j.zemedi.2009.10.010 CrossRefGoogle Scholar
  202. Swinson S, McHugh K (2011) Urogenital tumours in childhood. Cancer Imaging 11:S48–S64. doi: 10.1102/1470-7330.2011.9009 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Takazakura R, Johnin K, Furukawa A et al (2007) Magnetic resonance voiding cystourethrography for vesicoureteral reflux. J Magn Reson Imaging 25:170–174. doi: 10.1002/jmri.20822 CrossRefPubMedGoogle Scholar
  204. Tasian GE, Aaronson DS, McAninch JW (2010) Trauma/reconstruction/diversion/evaluation of renal function after major renal injury: correlation with the American Association for the Surgery of Trauma Injury Scale. JURO 183:196–200. doi: 10.1016/j.juro.2009.08.149 CrossRefGoogle Scholar
  205. Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259:25–38. doi: 10.1148/radiol.10092419 CrossRefPubMedGoogle Scholar
  206. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience1. Radiology 235:911–917. doi: 10.1148/radiol.2353040554 CrossRefPubMedGoogle Scholar
  207. Ulman I, Jayanthi VR, Koff SA (2000) The long-term followup of newborns with severe unilateral hydronephrosis initially treated nonoperatively. J Urol 164:1101–1105CrossRefPubMedGoogle Scholar
  208. Uthappa MC, Anthony D, Allen C (2002) Case report: retrocaval ureter: MR appearances. Br J Radiol 75:177–179CrossRefPubMedGoogle Scholar
  209. Van Arendonk KJ, Boyarsky BJ, Orandi BJ et al (2014) National trends over 25 years in pediatric kidney transplant outcomes. Pediatrics 133:594–601. doi: 10.1542/peds.2013-2775 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Vemulakonda V, Yiee J, Wilcox DT (2014) Prenatal hydronephrosis: postnatal evaluation and management. Curr Urol Rep 15:430. doi: 10.1007/s11934-014-0430-5 CrossRefPubMedGoogle Scholar
  211. Vivante A, Kohl S, Hwang D-Y et al (2014) Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol 29:695–704. doi: 10.1007/s00467-013-2684-4 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Vivier P-H, Dolores M, Taylor M, Dacher J-N (2010a) MR urography in children. Part 2: how to use ImageJ MR urography processing software. Pediatr Radiol 40:739–746. doi: 10.1007/s00247-009-1536-7 CrossRefPubMedGoogle Scholar
  213. Vivier P-H, Dolores M, Taylor M et al (2010b) MR urography in children. Part 1: how we do the F0 technique. Pediatr Radiol 40:732–738. doi: 10.1007/s00247-009-1538-5 CrossRefPubMedGoogle Scholar
  214. Vivier P-H, Sallem A, Beurdeley M et al (2013) MRI and suspected acute pyelonephritis in children: comparison of diffusion-weighted imaging with gadolinium-enhanced T1-weighted imaging. Eur Radiol 24:19–25. doi: 10.1007/s00330-013-2971-2 CrossRefPubMedGoogle Scholar
  215. Waingankar N, Hayek S, Smith AD, Okeke Z (2014) Calyceal diverticula: a comprehensive review. Rev Urol 16:29–43. doi: 10.3909/riu0581 CrossRefPubMedPubMedCentralGoogle Scholar
  216. Wang Y-T (2015) Functional assessment of transplanted kidneys with magnetic resonance imaging. WJR 7:343. doi: 10.4329/wjr.v7.i10.343 CrossRefPubMedGoogle Scholar
  217. Weiser AC, Amukele SA, Leonidas JC, Palmer LS (2003) The role of gadolinium enhanced magnetic resonance imaging for children with suspected acute pyelonephritis. J Urol 169:2308–2311. doi: 10.1097/01.ju.0000068082.91869.29 CrossRefPubMedGoogle Scholar
  218. Westland R, Schreuder MF, Ket JCF, Van Wijk JAE (2013) Unilateral renal agenesis: a systematic review on associated anomalies and renal injury. Nephrol Dial Transplant 28:1844–1855. doi: 10.1093/ndt/gft012 CrossRefPubMedGoogle Scholar
  219. Whitaker RH, Flower CD (1981) Megacalices--how broad a spectrum? Br J Urol 53:1–6CrossRefPubMedGoogle Scholar
  220. Whitaker RH, Bullock KN, Buxton-Thomas MS et al (1982) Role of modern radiological investigations in obstructive uropathy. Br Med J (Clin Res Ed) 285:211CrossRefGoogle Scholar
  221. Whitfield HN, Britton KE, Hendry WF et al (1978) The distinction between obstructive uropathy and nephropathy by radioisotope transit times. Br J Urol 50:433–436CrossRefPubMedGoogle Scholar
  222. Williams B, Tareen B, Resnick MI (2007) Pathophysiology and treatment of ureteropelvic junction obstruction. Curr Urol Rep 8:111–117. doi: 10.1007/s11934-007-0059-8 CrossRefPubMedGoogle Scholar
  223. Winkler NS, Kennedy AM, Woodward PJ (2012) Cloacal malformation. Embyrology, Anatomy and prenatal imaging features. J Ultrasound Med 31:1843–1855CrossRefPubMedGoogle Scholar
  224. Woolf AS (2004) Evolving concepts in human renal dysplasia. J Am Soc Nephrol 15:998–1007. doi: 10.1097/01.ASN.0000113778.06598.6F CrossRefPubMedGoogle Scholar
  225. Wright NB, Smith C, Rickwood AM, Carty HM (1995) Imaging children with ambiguous genitalia and intersex states. Clin Radiol 50:823–829CrossRefPubMedGoogle Scholar
  226. Wu AK, Tran TC, Sorensen MD et al (2012) Relative renal function does not improve after relieving chronic renal obstruction. BJU Int 109:1540–1544. doi: 10.1111/j.1464-410X.2011.10788.x CrossRefPubMedGoogle Scholar
  227. Yamamoto A, Zhang JL, Rusinek H et al (2011) Quantitative evaluation of acute renal transplant dysfunction with low-dose three-dimensional MR renography. Radiology 260:781–789. doi: 10.1148/radiol.11101664 CrossRefPubMedPubMedCentralGoogle Scholar
  228. Yavus A, Bora A, Kurdoglu M et al (2015) Herlyn-Werner-Wunderlich Syndrome: merits of sonographic and magnetic resonance imaging for accurate diagnosis and patient management in 13 cases. J Pediatr Adolesc Gynecol 28:47–52. doi: 10.1016/j.jpag.2014.03.004 CrossRefGoogle Scholar
  229. Yoo R-E, Cho JY, Kim SY, Kim SH (2013) Magnetic resonance evaluation of Müllerian Remnants in Mayer-Rokitansky-Küster-Hauser Syndrome. Korean J Radiol 14:233. doi: 10.3348/kjr.2013.14.2.233 CrossRefPubMedPubMedCentralGoogle Scholar
  230. Zhang JL, Morrell G, Rusinek H et al (2013a) New magnetic resonance imaging methods in nephrology. Kidney Int 85:768–778. doi: 10.1038/ki.2013.361 CrossRefPubMedPubMedCentralGoogle Scholar
  231. Zhang JL, Rusinek H, Chandarana H, Lee VS (2013b) Functional MRI of the kidneys. J Magn Reson Imaging 37:282–293. doi: 10.1002/jmri.23717 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of RadiologyChildren’s Healthcare of AtlantaAtlantaUSA
  2. 2.Department of RadiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations