Skip to main content

Renal Agenesis, Dysplasia, Hypoplasia, and Cystic Diseases of the Kidney

  • Chapter
  • First Online:
  • 1159 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Congenital anomalies of the kidney and urinary tract (CAKUT) cover a wide range of structural malformations that result from defects in the morphogenesis of the kidney and/or urinary tract (see also chapter “Congenital Anomalies of the Renal Pelvis and Ureter”). CAKUT occur in approximately 1:500 live-born fetuses and are the most common cause of chronic kidney disease in children worldwide (Renkema et al. 2011; Vivante et al. 2014). Congenital anomalies of the kidney include renal agenesis, renal hypo-/dysplasia with or without cysts, and multicystic dysplastic kidneys (Weber 2012). While most CAKUT cases are sporadic, renal abnormalities are found in close relatives in approximately 10 % of cases (Winyard and Chitty 2008). Although CAKUT typically occur as isolated malformations, they occasionally develop in association with additional congenital anomalies outside the urinary tract, such as in the renal coloboma syndrome or the renal cysts and diabetes syndrome; they may also be associated with cardiac malformations. Currently, more than 20 monogenic CAKUT-causing genes have been identified, and recent findings suggest that CAKUT may arise from a multitude of different single-gene causes (Vivante et al. 2014). The malformation phenotypes vary from normally appearing kidneys with preserved renal function (i.e., incomplete penetrance) to severe hypo-/dysplasia and end-stage renal disease. Features linked to worse prognosis are (1) bilateral disease, (2) decreased functional mass (which encompasses not just small kidneys but also large ones where cysts replace normal architecture), (3) lower urinary tract obstruction, and (4) anhydramnios or severe oligohydramnios (Winyard and Chitty 2008). Current management of CAKUT includes observation, surgical interventions, prophylaxis and treatment of urinary tract infections, strict blood pressure control, supplements for renal support, and nephroprotective treatment to slower the progression of chronic kidney disease.

This is a preview of subscription content, log in via an institution.

References

  • Adalat S, Woolf AS, Johnstone KA et al (2009) HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol 20:1123–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adeva M, El-Youssef M, Rossetti S (2006) Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine (Baltimore) 85:1–21

    Article  Google Scholar 

  • Aslam M, Watson AR, Trent & Anglia MCDK Study Group (2006) Unilateral multicystic dysplastic kidney: long term outcomes. Arch Dis Child 91:820–823

    Article  Google Scholar 

  • Babut JM, Bawab F, Jouan H et al (1993) Cystic renal tumors in children–a diagnostic challenge. Eur J Pediatr Surg 3:157–160

    Article  CAS  PubMed  Google Scholar 

  • Baert L, Steg A (1977) On the pathogenesis of simple renal cysts in the adult. Urol Res 5:103–108

    Article  CAS  PubMed  Google Scholar 

  • Bergmann C (2012) Ciliopathies. Eur J Pediatr 171:1285–1300

    Google Scholar 

  • Bergmann C (2015) ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr Nephrol 30(1):15–30

    Article  PubMed  Google Scholar 

  • Bergmann C, Senderek J, Sedlacek B et al (2003) Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J Am Soc Nephrol 13:76–89

    Article  CAS  Google Scholar 

  • Bergmann C, Senderek J, Windelen E (2005) Clinical consequences of PKHD1 mutations in 164 patients with automoal recessive polycystic kidney disease (ARPKD). Kidney Int 67:829–848

    Article  CAS  PubMed  Google Scholar 

  • Bergmann C, von Bothmer J, Ortiz Brüchle N et al (2011) Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol 22:2047–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein J (1993) Glomerulocystic kidney disease – nosological considerations. Pediatr Nephrol 7:464–470

    Article  CAS  PubMed  Google Scholar 

  • Bissler JJ, Siroky BL, Yin H (2010) Glomerulocystic kidney disease. Pediatr Nephrol 25:2049–2059

    Article  PubMed  PubMed Central  Google Scholar 

  • Bretan PN Jr, Bush MP, Hricak H et al (1986) Chronic renal failure: a significant risk factor in the development of acquired renal cysts and renal cell carcinoma. Case report and review of the literature. Cancer 57:1871–1879

    Article  PubMed  Google Scholar 

  • Chang EH, Menezes M, Meyer NC et al (2004) Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum Mut 23:582–589

    Article  CAS  PubMed  Google Scholar 

  • Chauveau D, Pirson Y, Verellen-Dumoulin C et al (1994) Intracranial aneurysms in autosomal dominant polycystic kidney disease. Kidney Int 45:1140–1146

    Article  CAS  PubMed  Google Scholar 

  • Churchill E, Kimoff R, Pinshy M et al (1975) Solitary intrarenal cyst: correctable cause of hypertension. Urology 6:485–488

    Article  CAS  PubMed  Google Scholar 

  • Dunill MS, Millard PR, Oliver D (1977) Acquired cystic disease of the kidneys: a hazard of long term intermittent maintenance haemodialysis. J Clin Pathol 30:868–877

    Article  Google Scholar 

  • Fabris A, Anglani F, Lupo A et al (2013) Medullary sponge kidney: state of the art. Nephrol Dial Transpl 28:1111–1119

    Article  Google Scholar 

  • Fick GM, Johnson AM, Strain JD et al (1993) Characteristics of very early onset autosomal dominant polycystic kidney disease. J Am Soc Nephrol 3:1863–1870

    PubMed  CAS  Google Scholar 

  • Fick-Brosnahan GM, Tran ZV, Johnson AM et al (2001) Progression of autosomal dominant polycystic kidney disease in children. Kidney Int 59:1654–1662

    Article  CAS  PubMed  Google Scholar 

  • Gabow PA, Kimberling WJ, Strain JD (1997) Utility of ultrasonography in the diagnosis of autosomal dominant polycystic kidney disease in children. J Am Soc Nephrol 8:105–110

    PubMed  CAS  Google Scholar 

  • Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11:331–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guay-Woodford LM, Desmond RA (2003) Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics 111:1072–1080

    Article  PubMed  Google Scholar 

  • Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes WN, Watson AR, Trent & Anglia MCKD Study Group (2012) Unilateral multicystic dysplastic kidney: does initial size matter? Pediatr Nephrol 27:1335–1340

    Article  PubMed  Google Scholar 

  • Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. New Engl J Med 364:1533–1543

    Article  CAS  PubMed  Google Scholar 

  • Hogg RJ (1992) Acquired cystic kidney disease in children prior to the start of dialysis. Pediatr Nephrol 6:176–178

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa I, Kuwayama F, Pope JC 4th et al (2002) Paradigm shift from classical anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 61:889–898

    Article  PubMed  Google Scholar 

  • Jeon A, Cramer BC, Walsh E et al (1999) A spectrum of segmental multicystic renal dysplasia. Pediatr Radiol 29:309–315

    Article  CAS  PubMed  Google Scholar 

  • Kashtan CE, Primack WA, Kainer G (1999) Recurrent bacteremia with enteric pathogens in recessive polycystic kidney disease. Pediatr Nephrol 13:678–682

    Article  CAS  PubMed  Google Scholar 

  • Kerecuk L, Schreuder MF, Woolf AS (2008) Renal tract malformations: perspectives for nephrologists. Nat Clin Pract Nephrol 4:312–325

    Article  PubMed  Google Scholar 

  • Leichter HE, Dietrich R, Salusky I et al (1988) Acquired cystic kidney disease in children undergoing long-term dialysis. Pediatr Nephrol 2:8–11

    Article  CAS  PubMed  Google Scholar 

  • Levine E (1992) Renal cell carcinoma in uremic acquired renal cystic disease: incidence, detection and management. Urol Radiol 13:203–210

    Article  CAS  PubMed  Google Scholar 

  • Lumiaho A, Ikaheimo R, Miettinen R et al (2001) Mitral valve prolapse and mitral regurgitation are common in patients with polycystic kidney disease type 1. Am J Kidney Dis 38:1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Mache CJ, Preisegger KH, Kopp S et al (2002) De novo HNF-1 beta gene mutation in familial hypoplastic glomerulocystic kidney disease. Pediatr Nephrol 17:1021–1026

    Article  PubMed  Google Scholar 

  • McHugh K, Stringer D, Hebert D (1991) Simple renal cyst in children: diagnosis and follow-up with US. Radiology 178:383–385

    Article  CAS  PubMed  Google Scholar 

  • Narchi H (2005a) Risk of hypertension with multicystic dysplastic kidney disease: a systematic review. Arch Dis Child 90:921–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narchi H (2005b) Risk of Wilms’ tumor with multicystic dysplastic kidney disease: a systematic review. Arch Dis Child 90:147–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poggiali IV, Oliveira EA (2012) Renal size and sonographic involution of multicystic dysplastic kidney. Pediatr Nephrol 27:1601–1602

    Article  PubMed  Google Scholar 

  • Ravine D, Gibson RN, Walker RG et al (1994) Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease 1. Lancet 343:824–827

    Article  CAS  PubMed  Google Scholar 

  • Renkema KY, Winyard PJ, Skovorodkin IN et al (2011) Novel perspectives for investigating congenital anomalies of the kidney and urinary tract. Nephrol Dial Transpl 26:3843–3851

    Article  Google Scholar 

  • Rosenblum ND, Salomon R (2008) Disorders of kidney formation. In: Geary DF, Schaefer F (eds) Comprehensive pediatric nephrology. Mosby Elsevier, Philadelphia, pp 131–141

    Chapter  Google Scholar 

  • Rossetti S, Chauveau D, Kubly V et al (2003) Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet 361:2196–2201

    Article  CAS  PubMed  Google Scholar 

  • Sanyanusin P, Schimmenti LA, McNoe LA et al (1995) Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 9:358–364

    Article  CAS  PubMed  Google Scholar 

  • Schedl A (2007) Renal abnormalities and their developmental origin. Nature Rev Genet 8:791–792

    Article  CAS  PubMed  Google Scholar 

  • Schreuder MF, Westland R, van Wijk JAE (2009) Unilateral multicystic dysplastic kidney: a meta-analysis of observational studies on the incidence, associated urinary tract malformations and the contralateral kidney. Nephrol Dial Transpl 24:1810–1818

    Article  Google Scholar 

  • Srivastava T, Garola RE, Hellerstein S (1999) Autosomal dominant inheritance of multicystic dysplastic kidney. Pediatr Nephrol 13:481–483

    Article  CAS  PubMed  Google Scholar 

  • Tada S, Yamagishi J, Kobayashi H et al (1983) The incidence of simple renal cysts by computed tomography. Clin Radiol 34:437–439

    Article  CAS  PubMed  Google Scholar 

  • Theissig F, Hempel J, Schubert J (1986) Multilocular cystic nephroma simulating kidney carcinoma. Ztschr Urol Nephrol 79:263–267

    CAS  Google Scholar 

  • Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369:1287–1301

    Article  PubMed  Google Scholar 

  • Ulinski T, Lescure S, Beaufils S et al (2006) Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol 17:497–503

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay AK, Neely JAC (1989) Cystic nephroma: an emerging entity. Ann R Coll Surg Engl 71:381–383

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vivante A, Kohl S, Hwang DY et al (2014) Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol 29:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Vylet’al P, Kublova M, Kalbacova M et al (2006) Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int 70:1155–1169

    Article  CAS  PubMed  Google Scholar 

  • Waters AM, Beales PL (2011) Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 26:1039–1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Watkins SL, McDonald RA, Avner ED (1997) Renal dysplasia, hypoplasia and miscellaneous cystic disorders. In: Barrat MT, Avner ED, Harmon WE (eds) Pediatric nephrology. Lippincott Williams & Wilkins, Baltimore, pp 415–426

    Google Scholar 

  • Weber S (2012) Novel genetic aspects of congenital anomalies of kidney and urinary tract. Curr Opin Pediatr 24:212–218

    Article  CAS  PubMed  Google Scholar 

  • Weber S, Moriniere V, Knüppel T et al (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17:2864–2870

    Article  CAS  PubMed  Google Scholar 

  • Westland R, Schreuder MF, Ket JCF et al (2013) Unilateral renal agenesis: a systematic review on associated anomalies and renal injury. Nephrol Dial Transplant 28:1844–1855

    Article  PubMed  Google Scholar 

  • Winyard P, Chitty LS (2008) Dysplastic kidneys. Semin Fetal Neonatal Med 13:142–151

    Article  PubMed  Google Scholar 

  • Woodward PJ, Kennedy A, Sohaey R et al (2011) Diagnostic imaging – obstetrics. Amirsys, Salt Lake City, pp 2–28

    Google Scholar 

  • Woolf AS (1997) The kidney: embryology. In: Barrat MT, Avner ED, Harmon WE (eds) Pediatric nephrology. Lippincott Williams & Wilkins, Baltimore, pp 1–17

    Google Scholar 

  • Woolf AS, Hillman KA (2007) Unilateral renal agenesis and the congenital solitary functioning kidney: developmental, genetic and clinical perspectives. BJU Int 99:17–21

    Article  CAS  PubMed  Google Scholar 

  • Woolf AS, Price KL, Scrambler PJ et al (2004) Evolving concepts in human renal dysplasia. J Am Soc Nephrol 15:998–1007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Mache MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mache, C., Hubmann, H. (2018). Renal Agenesis, Dysplasia, Hypoplasia, and Cystic Diseases of the Kidney. In: Riccabona, M. (eds) Pediatric Urogenital Radiology. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-319-39202-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39202-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39200-4

  • Online ISBN: 978-3-319-39202-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics