Designed Repeat Proteins as Building Blocks for Nanofabrication

  • Sara H. Mejias
  • Antonio Aires
  • Pierre Couleaud
  • Aitziber L. CortajarenaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 940)


This chapter will focus on the description of protein-based nanostructures. How proteins can be used as molecular units in order to generate complex materials and structures? What are the key aspects to achieve defined final properties, including shape, stability, function, and order at different length scales by modifying the protein sequence at the modular level?

As described in other chapters of the book, we will review the basic concepts and the latest achievements in protein engineering toward nanotechnological applications. Particularly in this chapter the main focus will be on a particular type of proteins, repeat proteins. Because of their modular nature, these proteins are better suited to be used as building blocks than other protein scaffolds. First, we describe general concepts of the protein-based assemblies. Then we introduce repeat proteins and describe the properties that will impact their use in nanotechnology. In particular, we focus on a system based on a synthetic protein, the consensus tetratricopeptide repeat (CTPR). We review recent works from other groups and our group in which the potential of these repeat protein scaffolds is exploited for the fabrication of different protein assemblies, and as biomolecular templates to arrange different molecules and nanoscale objects.


Biomolecular scaffolds Repeat proteins Designed proteins Self-assembly Nanostructures Hybrid structures Biomaterials Functional materials Nanoclusters Nanoparticles Bionanotechnology 



Financial support for this research was obtained from the Spanish Ministerio de Economía y Competitividad (BIO2012-34835), the European Commission International Reintegration Grant (IRG-246688), ERC-CoG-648071, and Marie Curie COFUND “AMAROUT-Europe” Programme (A.L.C.). S.H.M. thanks IMDEA-Nanociencia for financial support through an “Ayuda de Iniciación a la Investigación” fellowship and the Basque Government for financial support (PhD Scholarship).


  1. 1.
    Ulijn RV, Woolfson DN (2010) Peptide and protein based materials in 2010: from design and structure to function and application. Chem Soc Rev 2010(39):3349–3350CrossRefGoogle Scholar
  2. 2.
    Ulijn RV, Smith AM (2008) Designing peptide based nanomaterials. Chem Soc Rev 37:664–675PubMedCrossRefGoogle Scholar
  3. 3.
    Woolfson DN, Mahmoud ZN (2010) More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials. Chem Soc Rev 39:3464–3479PubMedCrossRefGoogle Scholar
  4. 4.
    Bhushan B (2009) Biomimetics: lessons from nature–an overview. Phil Trans R Soc A 367:1445–1486PubMedCrossRefGoogle Scholar
  5. 5.
    Stock D, Namba K, LK L (2012) Nanorotors and self-assembling macromolecular machines: the torque ring of the bacterial flagellar motor. Curr Opin Biotechnol 23:545–554PubMedCrossRefGoogle Scholar
  6. 6.
    Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269PubMedCrossRefGoogle Scholar
  7. 7.
    Gazit E (2008) Molecular self-assembly: bioactive nanostructures branch out. Nat Nanotechnol 3:8–9PubMedCrossRefGoogle Scholar
  8. 8.
    Bozic S, Doles T, Gradisar H, Jerala R (2013) New designed protein assemblies. Curr Opin Chem Biol 17:940–945PubMedCrossRefGoogle Scholar
  9. 9.
    Rajagopal K, Schneider JP (2004) Self-assembling peptides and proteins for nanotechnological applications. Curr Opin Struct Biol 14:480–486PubMedCrossRefGoogle Scholar
  10. 10.
    Knowles TP, Oppenheim TW, Buell AK, Chirgadze DY, Welland ME (2010) Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat Nanotechnol 5:204–207PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sinclair JC, Davies KM, Venien-Bryan C, Noble ME (2011) Generation of protein lattices by fusing proteins with matching rotational symmetry. Nat Nanotechnol 6:558–562PubMedCrossRefGoogle Scholar
  12. 12.
    Yeates TO (2011) Nanobiotechnology: protein arrays made to order. Nat Nanotechnol 6:541–542PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang S, Greenfield MA, Mata A, Palmer LC, Bitton R, Mantei JR, Aparicio C, de la Cruz MO, Stupp SI (2010) A self-assembly pathway to aligned monodomain gels. Nat Mater 9:594–601PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM, Högele A, Simmel FC, Govorov AO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314PubMedCrossRefGoogle Scholar
  15. 15.
    Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302PubMedCrossRefGoogle Scholar
  16. 16.
    Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368PubMedCrossRefGoogle Scholar
  17. 17.
    Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, St Clair JL, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular diels-alder reaction. Science 329:309–313PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gradisar H, Jerala R (2014) Self-assembled bionanostructures: proteins following the lead of DNA nanostructures. J Nanobiotechnol 12:4CrossRefGoogle Scholar
  19. 19.
    King NP, Sheffler W, Sawaya MR, Sollmar BS, Sumida JP, André I, Gonen T, Yeates TO, Baker D (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336:1171–1174PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lai YT, Cascio D, TO Y (2012) Structure of a 16-nm designed by using protein oligomers. Science 336:1129PubMedCrossRefGoogle Scholar
  21. 21.
    Andrade MA, Perez-Iratxeta C, Ponting CP (2001) Protein repeats: structures, functions, and evolution. J Struct Biol 134:117–131PubMedCrossRefGoogle Scholar
  22. 22.
    Kajava AV (2001) Review: proteins with repeated sequence–structural prediction and modeling. J Struct Biol 134:132–144PubMedCrossRefGoogle Scholar
  23. 23.
    D’Andrea L, Regan L (2003) Tpr proteins: the versatile helix. Trends Biochem Sci 28:655–662PubMedCrossRefGoogle Scholar
  24. 24.
    Kohl A, Binz HK, Forrer P, Stumpp MT, Pluckthun A, Grutter MG (2003) Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad Sci U S A 100:1700–1705PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Parker R, Mercedes-Camacho A, Grove TZ (2014) Consensus design of a nod receptor leucine rich repeat domain with binding affinity for a muramyl dipeptide, a bacterial cell wall fragment. Protein Sci 26:790–800CrossRefGoogle Scholar
  26. 26.
    Parmeggiani F, Pellarin R, Larsen AP, Varadamsetty G, Stumpp MT, Zerbe O, Caflisch A, Pluckthun A (2008) Designed armadillo repeat proteins as general peptide-binding scaffolds: consensus design and computational optimization of the hydrophobic core. J Mol Biol 376:1282–1304PubMedCrossRefGoogle Scholar
  27. 27.
    Flechsig H (2014) Tales from a spring--superelasticity of tal effector protein structures. PLoS One 9:e109919PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Main ERG, Xiong Y, Cocco MJ, D’Andrea L, Regan L (2003) Design of stable alpha-helical arrays from an idealized tpr motif. Structure 11:497–508PubMedCrossRefGoogle Scholar
  29. 29.
    Main ER, Phillips JJ, Millership C (2013) Repeat protein engineering: creating functional nanostructures/biomaterials from modular building blocks. Biochem Soc Trans 41:1152–1158PubMedCrossRefGoogle Scholar
  30. 30.
    Romera D, Couleaud P, Mejias SH, Aires A, Cortajarena AL (2015) Biomolecular templating of functional hybrid nanostructures using repeat protein scaffolds. Biochem Soc Trans 34:825–831CrossRefGoogle Scholar
  31. 31.
    Main E, Lowe A, Mochrie S, Jackson S, Regan L (2005) A recurring theme in protein engineering: the design, stability and folding of repeat proteins. Curr Opin Struct Biol 15:464–471PubMedCrossRefGoogle Scholar
  32. 32.
    Brunette TJ, Parmeggiani F, Huang PS, Bhabha G, Ekiert DC, Tsutakawa SE, Hura GL, Tainer JA, Baker D (2015) Exploring the repeat protein universe through computational protein design. Nature 528:580–584PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Doyle L, Hallinan J, Bolduc J, Parmeggiani F, Baker D, Stoddard BL, Bradley P (2015) Rational design of alpha-helical tandem repeat proteins with closed architectures. Nature 528:585–588PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Park K, Shen BW, Parmeggiani F, Huang PS, Stoddard BL, Baker D (2015) Control of the repeat-protein curvature by computational protein design. Nat Struct Mol Biol 22:167–174PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kajander T, Cortajarena AL, Regan L (2006) Consensus design as a tool for engineering repeat proteins. Methods Mol Biol 340:151–170PubMedGoogle Scholar
  36. 36.
    Magliery TJ, Regan L (2004) Beyond consensus: statistical free energies reveal hidden interactions in the design of a tpr motif. J Mol Biol 343:731–745PubMedCrossRefGoogle Scholar
  37. 37.
    Cortajarena AL, Liu TY, Hochstrasser M, Regan L (2010) Designed proteins to modulate cellular networks. ACS Chem Biol 5:545–552PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Grove T, Hands M, Regan L (2010) Creating novel proteins by combining design and selection. Protein Eng Des Sel 23:449–455PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kajander T, Cortajarena AL, Main ER, Mochrie SG, Regan L (2005) A new folding paradigm for repeat proteins. J Am Chem Soc 127:10188–10190PubMedCrossRefGoogle Scholar
  40. 40.
    Cortajarena AL, Mochrie SG, Regan L (2011) Modulating repeat protein stability: the effect of individual helix stability on the collective behavior of the ensemble. Protein Sci 20:1042–1047PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kajander T, Cortajarena AL, Mochrie S, Regan L (2007) Structure and stability of designed tpr protein superhelices: unusual crystal packing and implications for natural tpr proteins. Acta Crystallogr Sect D: Biol Crystallogr 63:800–811CrossRefGoogle Scholar
  42. 42.
    Cortajarena AL, Wang J, Regan L (2010) Crystal structure of a designed tpr module in complex with its peptide-ligand. FEBS J 277:1058–1066PubMedCrossRefGoogle Scholar
  43. 43.
    Mejias SH, Sot B, Guantes R, Cortajarena AL (2014) Controlled nanometric fibers of self-assembled designed protein scaffolds. Nanoscale 6:10982–10988PubMedCrossRefGoogle Scholar
  44. 44.
    Phillips JJ, Millership C, Main ER (2012) Fibrous nanostructures from the self-assembly of designed repeat protein modules. Angew Chem 51:13132–13135Google Scholar
  45. 45.
    Mejias SH, Couleaud P, Casado S, Granados D, Garcia MA, Abad JM, Cortajarena AL (2016) Assembly of designed protein scaffolds into monolayers for nanoparticle patterning. Colloids Surf B Biointerfaces 141:93–101PubMedCrossRefGoogle Scholar
  46. 46.
    Grove TZ, Regan L, Cortajarena AL (2013) Nanostructured functional films from engineered repeat proteins. J R Soc Interface 10:20130051PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cortajarena AL, Regan L (2011) Calorimetric study of a series of designed repeat proteins: modular structure and modular folding. Protein Sci 20:341–352CrossRefGoogle Scholar
  48. 48.
    Kajander T, Cortajarena AL, Mochrie SG, Regan L (2007) Structure and stability of a consensus tpr superhelix. Acta Crystallogr D D63:800–811CrossRefGoogle Scholar
  49. 49.
    Carter NA, Grove TZ (2015) Repeat-proteins films exhibit hierarchical anisotropic mechanical properties. Biomacromolecules 16:706–714PubMedCrossRefGoogle Scholar
  50. 50.
    Alivisatos AP (1997) Nanocrystals: building blocks for modern materials design. Endevour 21:56–60CrossRefGoogle Scholar
  51. 51.
    Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15CrossRefGoogle Scholar
  52. 52.
    Lopez-Andarias J, Lopez JL, Atienza C, Brunetti FG, Romero-Nieto C, Guldi DM, Martin N (2014) Controlling the crystalline three-dimensional order in bulk materials by single-wall carbon nanotubes. Nat Commun 5:3763PubMedCrossRefGoogle Scholar
  53. 53.
    Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJ (2007) Developmental toxicity in zebrafish (danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nc60) and fullerol. Environ Toxicol Chem 26:976–979PubMedCrossRefGoogle Scholar
  54. 54.
    Patolsky F, Weizmann Y (2002) Au-nanoparticle nanowires based on DNA and polylysine templates. Angew Chem Int Ed 41:2323–2327CrossRefGoogle Scholar
  55. 55.
    Zhang C, Song C, Fry HC, Rosi NL (2014) Peptide conjugates for directing the morphology and assembly of 1d nanoparticle superstructures. Chem-a Eur J 20:941–945CrossRefGoogle Scholar
  56. 56.
    Chen C-l, Zhang P, Rosi NL (2008) A new peptide-based method for the design and synthesis of nanoparticle superstructures: nanoparticle double helices construction of highly-ordered gold. J Am Chem Soc 130:1–15Google Scholar
  57. 57.
    Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108:4935–4978PubMedCrossRefGoogle Scholar
  58. 58.
    Cung K, Han BJ, Nguyen TD, Mao S, Yeh Y-W, Xu S, Naik RR, Poirier G, Yao N, Purohit PK et al (2013) Biotemplated synthesis of pzt nanowires. Nano Lett 13:6197–6202PubMedCrossRefGoogle Scholar
  59. 59.
    Ostrov N, Gazit E (2010) Genetic engineering of biomolecular scaffolds for the fabrication of organic and metallic nanowires. Angew Chem Int ed Engl 49:3018–3021PubMedCrossRefGoogle Scholar
  60. 60.
    Zhou JC, Wang X, Xue M, Xu Z, Hamasaki T, Yang Y, Wang K, Dunn B (2010) Characterization of gold nanoparticle binding to microtubule filaments. Mater Sci Eng C 30:20–26CrossRefGoogle Scholar
  61. 61.
    Weizmann Y, Patolsky F, Popov I, Willner I (2004) Telomerase-generated templates for the growing of metal nanowires. Nano Lett 4:787–792CrossRefGoogle Scholar
  62. 62.
    Blum AS, Soto CM, Wilson CD, Cole JD, Kim M, Gnade B, Chatterji A, Ochoa WF, Lin T, Johnson JE et al (2004) Cowpea mosaic virus as a scaffold for 3-d patterning of gold nanoparticles. Nano Lett 4:867–870CrossRefGoogle Scholar
  63. 63.
    Blum AS, Soto CM, Wilson CD, Brower TL, Pollack SK, Schull TL, Chatterji A, Lin T, Johnson JE, Amsinck C et al (2005) An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Small 1:702–706PubMedCrossRefGoogle Scholar
  64. 64.
    Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303:213–217PubMedCrossRefGoogle Scholar
  65. 65.
    Huang Y, Chiang C-Y, Lee SK, Gao Y, Hu EL, Yoreo JD, Belcher AM (2005) Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett 5:1429–1434PubMedCrossRefGoogle Scholar
  66. 66.
    Wnęk M, Górzny ML, Ward MB, Wälti C, Davies AG, Brydson R, Evans SD, Stockley PG (2013) Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins. Nanotechnology 24:025605PubMedCrossRefGoogle Scholar
  67. 67.
    Guerrero-Martinez A, Grzelczak M, Liz-Marzan LM (2012) Molecular thinking for nanoplasmonic design. ACS Nano 6:3655–3662PubMedCrossRefGoogle Scholar
  68. 68.
    Gubler U, Bosshard C (2002) Optical materials: a new twist for nonlinear optics. Nat Mater 1:209–210PubMedCrossRefGoogle Scholar
  69. 69.
    Pendry JB (2004) A chiral route to negative refraction. Science 306:1353–1355PubMedCrossRefGoogle Scholar
  70. 70.
    Wang R-Y, Wang H, Wu X, Ji Y, Wang P, Qu Y, Chung T-S (2011) Chiral assembly of gold nanorods with collective plasmonic circular dichroism response. Soft Matter 7:8370CrossRefGoogle Scholar
  71. 71.
    Liu Q, Cui Y, Gardner D, Li X, He S, Smalyukh II (2010) Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett 10:1347–1353PubMedCrossRefGoogle Scholar
  72. 72.
    Shen X, Zhan P, Kuzyk A, Liu Q, Asenjo-Garcia A, Zhang H, de Abajo FJG, Govorov A, Ding B, Liu N (2014) 3d plasmonic chiral colloids. Nanoscale 6:2077–2081PubMedCrossRefGoogle Scholar
  73. 73.
    Schreiber R, Luong N, Fan Z, Kuzyk A, Nickels PC, Zhang T, Smith DM, Yurke B, Kuang W, Govorov AO et al (2013) Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat Commun 4:2948PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Slocik JM, Govorov AO, Naik RR (2011) Plasmonic circular dichroism of peptide fucntionalized gold nanoparticles-supplemental material. Nano Lett 11:701–705PubMedCrossRefGoogle Scholar
  75. 75.
    Geng X, Grove TZ (2015) Repeat protein mediated synthesis of gold nanoparticles: effect of protein shape on the morphological and optical properties. RSC Adv 5:2062–2069CrossRefGoogle Scholar
  76. 76.
    Chen S, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280:2098–2101PubMedCrossRefGoogle Scholar
  77. 77.
    Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291:103–106PubMedCrossRefGoogle Scholar
  78. 78.
    Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 58:409–431PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jin R, Zhu Y, Qian H (2011) Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chemistry 17:6584–6593PubMedCrossRefGoogle Scholar
  80. 80.
    Shang L, Dong S, Gu N (2011) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6:401–418CrossRefGoogle Scholar
  81. 81.
    Lu Y, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41:3594–3623PubMedCrossRefGoogle Scholar
  82. 82.
    Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Identification of active gold nanoclusters on iron oxide supports for co oxidation. Science 321:1331–1335PubMedCrossRefGoogle Scholar
  83. 83.
    Turner M, Golovko VB, Vaughan OP, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BF, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981–983PubMedCrossRefGoogle Scholar
  84. 84.
    Muhammed MA, Verma PK, Pal SK, Kumar RC, Paul S, Omkumar RV, Pradeep T (2009) Nir-emitting au23 from au25: characterization and applications including biolabeling. Chemistry 15:10110–10120PubMedCrossRefGoogle Scholar
  85. 85.
    Xie J, Zheng Y, Ying JY (2010) Highly selective and ultrasensitive detection of hg2+ based on fluorescence quenching of au nanoclusters by hg2 + –au + interactions. Chem Commun 46:961CrossRefGoogle Scholar
  86. 86.
    Li J, Zhong X, Cheng F, Zhang JR, Jiang LP, Zhu JJ (2012) One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging. Anal Chem 84:4160–4166Google Scholar
  87. 87.
    Hussain AM, Sarangi SN, Kesarwani JA, Sahu SN (2011) Au-nanocluster emission based glucose sensing. Biosens Bioelectron 29:60–65PubMedCrossRefGoogle Scholar
  88. 88.
    Varnavski O, Ispasoiu RG, Balogh L, Tomalia D, Goodson T (2001) Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites. J Chem Phys 114:1962–1965CrossRefGoogle Scholar
  89. 89.
    Bao Y, Yeh HC, Zhong C, Ivanov SA, Sharma JK, Neidig ML, Vu DM, Shreve AP, Dyer RB, Werner JH et al (2010) Formation and stabilization of fluorescent gold nanoclusters using small molecules. In J Phys Chem C 114:15879–15882CrossRefGoogle Scholar
  90. 90.
    Liu G, Shao Y, Wu F, Xu S, Peng J, Liu L (2013) DNA-hosted fluorescent gold nanoclusters: sequence-dependent formation. Nanotechnology 24:015503PubMedCrossRefGoogle Scholar
  91. 91.
    Chevrier D, Chatt A, Zhang P (2012) Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review. J Nanophotonics 6:064504Google Scholar
  92. 92.
    Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889PubMedCrossRefGoogle Scholar
  93. 93.
    Chen Y, Wang Y, Wang C, Li W, Zhou H, Jiao H, Lin Q, Yu C (2013) Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of cu2+. J Colloid Interface Sci 396:63–68PubMedCrossRefGoogle Scholar
  94. 94.
    Le Guével X, Daum N, Schneider M (2011) Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotechnology 22:275103PubMedCrossRefGoogle Scholar
  95. 95.
    Weia H, Wang Z, Yanga L, Tiana S, Houc C, Lua Y (2010) Lysozyme-stabilized gold fluorescent cluster: synthesis and application as hg2+ sensor. Analyst 135:1406–1410CrossRefGoogle Scholar
  96. 96.
    Kawasaki H, Yoshimura K, Hamaguchi K, Arakawa R (2011) Trypsin-stabilized fluorescent gold nanocluster for sensitive and selective hg2+ detection. Anal Sci 27:591–596PubMedCrossRefGoogle Scholar
  97. 97.
    Kawasaki H, Hamaguchi K, Osaka I, Arakawa R (2011) Ph-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv Funct Mater 21:3508–3515CrossRefGoogle Scholar
  98. 98.
    Liu C-L, Wu H-T, Hsiao Y-H, Lai C-W, Shih C-W, Peng Y-K, Tang K-C, Chang H-W, Chien Y-C, Hsiao J-K et al (2011) Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angew Chem 50:7056–7060CrossRefGoogle Scholar
  99. 99.
    Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83:1193–1196PubMedCrossRefGoogle Scholar
  100. 100.
    Grove TZ, Regan L (2012) New materials from proteins and peptides. Curr Opin Struct Biol 22:451–456PubMedCrossRefGoogle Scholar
  101. 101.
    Jackrel ME, Cortajarena AL, Liu TY, Regan L (2010) Screening libraries to identify proteins with desired binding activities using a split-gfp reassembly assay. ACS Chem Biol 5:553–562PubMedCrossRefGoogle Scholar
  102. 102.
    Couleaud P, Adan-Bermudez S, Aires A, Mejías S, Sot B, Somoza A, Cortajarena A (2015) Designed modular proteins as scaffolds to stabilize fluorescent nanoclusters. Biomacromolecules 16:3836–3844PubMedCrossRefGoogle Scholar
  103. 103.
    Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nature Materials 4:366–377Google Scholar
  104. 104.
    Henson ZB, Mullen K, Bazan GC (2012) Design strategies for organic semiconductors beyond the molecular formula. Nat Chem 4:699–704PubMedCrossRefGoogle Scholar
  105. 105.
    Lopez-Andarias J, Rodriguez MJ, Atienza C, Lopez JL, Mikie T, Casado S, Seki S, Carrascosa JL, Martin N (2015) Highly ordered n/p-co-assembled materials with remarkable charge mobilities. J Am Chem Soc 137:893–897PubMedCrossRefGoogle Scholar
  106. 106.
    Ruiz-Carretero A, Janssen PG, Kaeser A, Schenning AP (2011) DNA-templated assembly of dyes and extended π-conjugated systems. Chem Commun 47:4340–4347CrossRefGoogle Scholar
  107. 107.
    Sun J, Zuckerman RN (2013) Peptoid polymers: a highly designable bioinspired material. ACS Nano 7:4715–4732PubMedCrossRefGoogle Scholar
  108. 108.
    Ying Q, Zhang J, Liang D, Nakanishi W, Isobe H, Nakamura E, Chu B (2005) Fractal behavior of functionalized fullerene aggregates. I. Aggregation of two-handed tetraaminofullerene with DNA. Langmuir 21:9824–9831PubMedCrossRefGoogle Scholar
  109. 109.
    Reiriz C, Brea RJ, Arranz R, Carrascosa JL, Garibotti A, Manning B, Valpuesta JM, Eritja R, Castedo L, Granja JR (2009) Alpha, gamma-peptide nanotube templating of one-dimensional parallel fullerene arrangements. J Am Chem Soc 131:11335–11337PubMedCrossRefGoogle Scholar
  110. 110.
    Kumar R, MacDonald JM, Singh TB, Waddington LJ, Holmes AB (2011) Hierarchical self-assembly of semiconductor functionalized peptide α-helices and optoelectronic properties. J Am Chem Soc 133:8564–8573PubMedCrossRefGoogle Scholar
  111. 111.
    Mejías SH, López-Andarias J, Sakurai T, Yoneda S, Erazo KP, Seki S, Atienza C, Martín N, Cortajarena AL (2016) Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state. Chem Sci 7:4842–4847Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sara H. Mejias
    • 1
  • Antonio Aires
    • 1
    • 2
  • Pierre Couleaud
    • 1
  • Aitziber L. Cortajarena
    • 1
    • 2
    • 3
    Email author
  1. 1.CIC BiomaGUNEDonostia-San SebastiánSpain
  2. 2.IMDEA-Nanociencia, Campus de CantoblancoMadridSpain
  3. 3.Ikerbasque, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations