Advertisement

Two-Dimensional Peptide and Protein Assemblies

  • Elizabeth Magnotti
  • Vincent ConticelloEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 940)

Abstract

Two-dimensional nanoscale assemblies (nanosheets) represent a promising structural platform to arrange molecular and supramolecular substrates with precision for integration into devices. This nanoarchitectonic approach has gained significant traction over the last decade, as a general concept to guide the fabrication of functional nanoscale devices. Sequence-specific biomolecules, e.g., peptides and proteins, may be considered excellent substrates for the fabrication of two-dimensional nanoarchitectonics. Molecular level instructions can be encoded within the sequence of monomers, which allows for control over supramolecular structure if suitable design principles could be elaborated. Due to the complexity of interactions between protomers, the development of principles aimed toward rational design of peptide and protein nanosheets is at a nascent stage. This review discusses the known two-dimensional peptide and protein assemblies to further our understanding of how to control the arrangement of molecules in two-dimensions.

Keywords

Peptide assemblies Protein assemblies Protein layers Nanosheets Nanoarchitectonics Protomers Nanomaterials 

Notes

Acknowledgment

E.M. and V.P.C. thank the National Science Foundation grant CHE-1412580 for financial support. In addition, we acknowledge the generosity of many of the investigators cited in this review for providing original artwork for creation of the figures in the manuscript.

References

  1. 1.
    Egelman EH, Francis N, DeRosier DJ (1982) F-actin is a helix with a random variable twist. Nature 298(5870):131–135CrossRefPubMedGoogle Scholar
  2. 2.
    Galkin VE, Orlova A, Vos MR, Schroder GF, Egelman EH (2015) Near-atomic resolution for one state of F-actin. Structure 23(1):173–182. doi: 10.1016/j.str.2014.11.006 CrossRefPubMedGoogle Scholar
  3. 3.
    Prockop DJ, Fertala A (1998) The collagen fibril: the almost crystalline structure. J Struct Biol 122(1–2):111–118. doi: 10.1006/jsbi.1998.3976 CrossRefPubMedGoogle Scholar
  4. 4.
    Anzini P, Xu C, Hughes S, Magnotti E, Jiang T, Hemmingsen L, Demeler B, Conticello VP (2013) Controlling self-assembly of a peptide-based material via metal-ion induced registry shift. J Am Chem Soc 135(28):10278–10281. doi: 10.1021/ja404677c CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dong H, Paramonov SE, Hartgerink JD (2008) Self-assembly of alpha-helical coiled coil nanofibers. J Am Chem Soc 130(41):13691–13695. doi: 10.1021/ja8037323 CrossRefPubMedGoogle Scholar
  6. 6.
    Dublin SN, Conticello VP (2008) Design of a selective metal ion switch for self-assembly of peptide-based fibrils. J Am Chem Soc 130(1):49–51. doi: 10.1021/ja0775016 CrossRefPubMedGoogle Scholar
  7. 7.
    Kojima S, Kuriki Y, Yoshida T, Yazaki K, K-i M (1997) Fibril formation by an Amphipathic.ALPHA.-Helix-Forming polypeptide produced by gene engineering. Proc Jpn Acad 73(1):7–11. doi: 10.2183/pjab.73.7 CrossRefGoogle Scholar
  8. 8.
    Ogihara NL, Ghirlanda G, Bryson JW, Gingery M, DeGrado WF, Eisenberg D (2001) Design of three-dimensional domain-swapped dimers and fibrous oligomers. Proc Natl Acad Sci U S A 98(4):1404–1409. doi: 10.1073/pnas.98.4.1404 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pandya MJ, Spooner GM, Sunde M, Thorpe JR, Rodger A, Woolfson DN (2000) Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. Biochemistry 39(30):8728–8734CrossRefPubMedGoogle Scholar
  10. 10.
    Papapostolou D, Smith AM, Atkins ED, Oliver SJ, Ryadnov MG, Serpell LC, Woolfson DN (2007) Engineering nanoscale order into a designed protein fiber. Proc Natl Acad Sci U S A 104(26):10853–10858. doi: 10.1073/pnas.0700801104 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Potekhin SA, Melnik TN, Popov V, Lanina NF, Vazina AA, Rigler P, Verdini AS, Corradin G, Kajava AV (2001) De novo design of fibrils made of short alpha-helical coiled coil peptides. Chem Biol 8(11):1025–1032CrossRefPubMedGoogle Scholar
  12. 12.
    Ryadnov MG, Woolfson DN (2003) Introducing branches into a self-assembling peptide fiber. Angew Chem Int Ed Engl 42(26):3021–3023. doi: 10.1002/anie.200351418 CrossRefPubMedGoogle Scholar
  13. 13.
    Ryadnov MG, Woolfson DN (2003) Engineering the morphology of a self-assembling protein fibre. Nat Mater 2(5):329–332. doi: 10.1038/nmat885 CrossRefPubMedGoogle Scholar
  14. 14.
    Wagner DE, Phillips CL, Ali WM, Nybakken GE, Crawford ED, Schwab AD, Smith WF, Fairman R (2005) Toward the development of peptide nanofilaments and nanoropes as smart materials. Proc Natl Acad Sci U S A 102(36):12656–12661. doi: 10.1073/pnas.0505871102 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zimenkov Y, Conticello VP, Guo L, Thiyagarajan P (2004) Rational design of a nanoscale helical scaffold derived from self-assembly of a dimeric coiled coil motif. Tetrahedron 60(34):7237–7246. doi:http://dx.doi.org/ 10.1016/j.tet.2004.06.068
  16. 16.
    Zimenkov Y, Dublin SN, Ni R, Tu RS, Breedveld V, Apkarian RP, Conticello VP (2006) Rational design of a reversible pH-responsive switch for peptide self-assembly. J Am Chem Soc 128(21):6770–6771. doi: 10.1021/ja0605974 CrossRefPubMedGoogle Scholar
  17. 17.
    Aggeli A, Bell M, Boden N, Keen JN, Knowles PF, McLeish TC, Pitkeathly M, Radford SE (1997) Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386(6622):259–262. doi: 10.1038/386259a0 CrossRefPubMedGoogle Scholar
  18. 18.
    Aggeli A, Bell M, Carrick LM, Fishwick CW, Harding R, Mawer PJ, Radford SE, Strong AE, Boden N (2003) pH as a trigger of peptide beta-sheet self-assembly and reversible switching between nematic and isotropic phases. J Am Chem Soc 125(32):9619–9628. doi: 10.1021/ja021047i CrossRefPubMedGoogle Scholar
  19. 19.
    Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TC, Semenov AN, Boden N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci U S A 98(21):11857–11862. doi: 10.1073/pnas.191250198 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bowerman CJ, Liyanage W, Federation AJ, Nilsson BL (2011) Tuning beta-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity. Biomacromolecules 12(7):2735–2745. doi: 10.1021/bm200510k CrossRefPubMedGoogle Scholar
  21. 21.
    Dong H, Paramonov SE, Aulisa L, Bakota EL, Hartgerink JD (2007) Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure. J Am Chem Soc 129(41):12468–12472. doi: 10.1021/ja072536r CrossRefPubMedGoogle Scholar
  22. 22.
    Janek K, Behlke J, Zipper J, Fabian H, Georgalis Y, Beyermann M, Bienert M, Krause E (1999) Water-soluble beta-sheet models which self-assemble into fibrillar structures. Biochemistry 38(26):8246–8252. doi: 10.1021/bi990510+ CrossRefPubMedGoogle Scholar
  23. 23.
    Marini DM, Hwang W, Lauffenburger DA, Zhang S, Kamm RD (2002) Left-handed helical ribbon intermediates in the self-assembly of a β-Sheet peptide. Nano Lett 2(4):295–299. doi: 10.1021/nl015697g CrossRefGoogle Scholar
  24. 24.
    Matsumura S, Uemura S, Mihara H (2004) Fabrication of nanofibers with uniform morphology by self-assembly of designed peptides. Chemistry 10(11):2789–2794. doi: 10.1002/chem.200305735 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90(8):3334–3338CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Swanekamp RJ, DiMaio JT, Bowerman CJ, Nilsson BL (2012) Coassembly of enantiomeric amphipathic peptides into amyloid-inspired rippled beta-sheet fibrils. J Am Chem Soc 134(12):5556–5559. doi: 10.1021/ja301642c CrossRefPubMedGoogle Scholar
  27. 27.
    Nagarkar RP, Hule RA, Pochan DJ, Schneider JP (2008) De novo design of strand-swapped beta-hairpin hydrogels. J Am Chem Soc 130(13):4466–4474. doi: 10.1021/ja710295t CrossRefPubMedGoogle Scholar
  28. 28.
    Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125(39):11802–11803. doi: 10.1021/ja0353154 CrossRefPubMedGoogle Scholar
  29. 29.
    Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124(50):15030–15037CrossRefPubMedGoogle Scholar
  30. 30.
    Choo DW, Schneider JP, Graciani NR, Kelly JW (1996) Nucleated antiparallel β-Sheet that folds and undergoes self-assembly: a template promoted folding strategy toward controlled molecular architectures. Macromolecules 29(1):355–366. doi: 10.1021/ma950703e CrossRefGoogle Scholar
  31. 31.
    Cejas MA, Kinney WA, Chen C, Leo GC, Tounge BA, Vinter JG, Joshi PP, Maryanoff BE (2007) Collagen-related peptides: self-assembly of short, single strands into a functional biomaterial of micrometer scale. J Am Chem Soc 129(8):2202–2203. doi: 10.1021/ja066986f CrossRefPubMedGoogle Scholar
  32. 32.
    Cejas MA, Kinney WA, Chen C, Vinter JG, Almond HR Jr, Balss KM, Maryanoff CA, Schmidt U, Breslav M, Mahan A, Lacy E, Maryanoff BE (2008) Thrombogenic collagen-mimetic peptides: self-assembly of triple helix-based fibrils driven by hydrophobic interactions. Proc Natl Acad Sci U S A 105(25):8513–8518. doi: 10.1073/pnas.0800291105 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kar K, Ibrar S, Nanda V, Getz TM, Kunapuli SP, Brodsky B (2009) Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. Biochemistry 48(33):7959–7968. doi: 10.1021/bi900496m CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Koide T, Homma DL, Asada S, Kitagawa K (2005) Self-complementary peptides for the formation of collagen-like triple helical supramolecules. Bioorg Med Chem Lett 15(23):5230–5233. doi: 10.1016/j.bmcl.2005.08.041 CrossRefPubMedGoogle Scholar
  35. 35.
    O’Leary LE, Fallas JA, Hartgerink JD (2011) Positive and negative design leads to compositional control in AAB collagen heterotrimers. J Am Chem Soc 133(14):5432–5443. doi: 10.1021/ja111239r CrossRefPubMedGoogle Scholar
  36. 36.
    Przybyla DE, Perez CMR, Gleaton J, Nandwana V, Chmielewski J (2013) Hierarchical assembly of collagen peptide triple helices into curved disks and metal ion-promoted hollow spheres. J Am Chem Soc 135(9):3418–3422. doi: 10.1021/ja307651e Google Scholar
  37. 37.
    Rele S, Song YH, Apkarian RP, Qu Z, Conticello VP, Chaikof EL (2007) D-periodic collagen-mimetic microfibers. J Am Chem Soc 129(47):14780–14787. doi: 10.1021/ja0758990 Google Scholar
  38. 38.
    Xu F, Li J, Jain V, Tu RS, Huang Q, Nanda V (2012) Compositional control of higher order assembly using synthetic collagen peptides. J Am Chem Soc 134(1):47–50. doi: 10.1021/ja2077894 CrossRefPubMedGoogle Scholar
  39. 39.
    Yamazaki CM, Asada S, Kitagawa K, Koide T (2008) Artificial collagen gels via self-assembly of de novo designed peptides. Biopolymers 90(6):816–823. doi: 10.1002/bip.21100 CrossRefPubMedGoogle Scholar
  40. 40.
    Kotch FW, Raines RT (2006) Self-assembly of synthetic collagen triple helices. Proc Natl Acad Sci U S A 103(9):3028–3033. doi: 10.1073/pnas.0508783103 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lanci CJ, MacDermaid CM, Kang SG, Acharya R, North B, Yang X, Qiu XJ, DeGrado WF, Saven JG (2012) Computational design of a protein crystal. Proc Natl Acad Sci U S A 109(19):7304–7309. doi: 10.1073/pnas.1112595109 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Briegel A, Wong ML, Hodges HL, Oikonomou CM, Piasta KN, Harris MJ, Fowler DJ, Thompson LK, Falke JJ, Kiessling LL, Jensen GJ (2014) New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography. Biochemistry 53(10):1575–1585. doi: 10.1021/bi5000614 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Vasa S, Lin L, Shi C, Habenstein B, Riedel D, Kuhn J, Thanbichler M, Lange A (2015) beta-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR. Proc Natl Acad Sci U S A 112(2):E127–E136. doi: 10.1073/pnas.1418450112 CrossRefPubMedGoogle Scholar
  44. 44.
    Gundelfinger ED, Boeckers TM, Baron MK, Bowie JU (2006) A role for zinc in postsynaptic density asSAMbly and plasticity? Trends Biochem Sci 31(7):366–373. doi: 10.1016/j.tibs.2006.05.007 CrossRefPubMedGoogle Scholar
  45. 45.
    Knight MJ, Joubert MK, Plotkowski ML, Kropat J, Gingery M, Sakane F, Merchant SS, Bowie JU (2010) Zinc binding drives sheet formation by the SAM domain of diacylglycerol kinase delta. Biochemistry 49(44):9667–9676. doi: 10.1021/bi101261x CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Baron MK, Boeckers TM, Vaida B, Faham S, Gingery M, Sawaya MR, Salyer D, Gundelfinger ED, Bowie JU (2006) An architectural framework that may lie at the core of the postsynaptic density. Science 311(5760):531–535. doi: 10.1126/science.1118995 CrossRefPubMedGoogle Scholar
  47. 47.
    Ariga K, Ji QM, Hill JP, Bando Y, Aono M (2012) Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. Npg Asia Mater 4:ARTN e17. doi: 10.1038/am.2012.30 Google Scholar
  48. 48.
    Avinash MB, Govindaraju T (2014) Nanoarchitectonics of biomolecular assemblies for functional applications. Nanoscale 6(22):13348–13369. doi: 10.1039/c4nr04340e Google Scholar
  49. 49.
    Govindaraju T, Avinash MB (2012) Two-dimensional nanoarchitectonics: organic and hybrid materials. Nanoscale 4(20):6102–6117. doi: 10.1039/c2nr31167d Google Scholar
  50. 50.
    Messner P, Pum D, Sleytr UB (1986) Characterization of the ultrastructure and the self-assembly of the surface layer of Bacillus stearothermophilus strain NRS 2004/3a. J Ultrastruct Mol Struct Res 97(1–3):73–88CrossRefPubMedGoogle Scholar
  51. 51.
    Taylor KS, Lou MZ, Chin TM, Yang NC, Garavito RM (1996) A novel, multilayer structure of a helical peptide. Protein Sci 5(3):414–421CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ogihara NL, Weiss MS, Degrado WF, Eisenberg D (1997) The crystal structure of the designed trimeric coiled coil coil-VaLd: implications for engineering crystals and supramolecular assemblies. Protein Sci 6(1):80–88. doi: 10.1002/pro.5560060109 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Vasudev PG, Shamala N, Balaram P (2008) Nucleation, growth, and form in crystals of peptide helices. J Phys Chem B 112(4):1308–1314. doi: 10.1021/jp077231d CrossRefPubMedGoogle Scholar
  54. 54.
    Patterson WR, Anderson DH, DeGrado WF, Cascio D, Eisenberg D (1999) Centrosymmetric bilayers in the 0.75 A resolution structure of a designed alpha-helical peptide, D, L-Alpha-1. Protein Sci 8(7):1410–1422. doi: 10.1110/ps.8.7.1410 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sleytr UB, Egelseer EM, Ilk N, Pum D, Schuster B (2007) S-Layers as a basic building block in a molecular construction kit. Febs J 274(2):323–334. doi: 10.1111/j.1742-4658.2006.05606.x CrossRefPubMedGoogle Scholar
  56. 56.
    Sleytr UB, Huber C, Ilk N, Pum D, Schuster B, Egelseer EM (2007) S-layers as a tool kit for nanobiotechnological applications. FEMS Microbiol Lett 267(2):131–144CrossRefPubMedGoogle Scholar
  57. 57.
    Weiss MS, Anderson DH, Raffioni S, Bradshaw RA, Ortenzi C, Luporini P, Eisenberg D (1995) A cooperative model for receptor recognition and cell adhesion: evidence from the molecular packing in the 1.6-A crystal structure of the pheromone Er-1 from the ciliated protozoan Euplotes raikovi. Proc Natl Acad Sci U S A 92(22):10172–10176CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Anderson DH, Weiss MS, Eisenberg D (1996) A challenging case for protein crystal structure determination: the mating pheromone Er-1 from Euplotes raikovi. Acta Crystallogr D Biol Crystallogr 52(Pt 3):469–480. doi: 10.1107/S0907444995014235 CrossRefPubMedGoogle Scholar
  59. 59.
    Baranova E, Fronzes R, Garcia-Pino A, Van Gerven N, Papapostolou D, Pehau-Arnaudet G, Pardon E, Steyaert J, Howorka S, Remaut H (2012) SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487(7405):119–122. doi: 10.1038/nature11155 PubMedGoogle Scholar
  60. 60.
    Pum D, Weinhandl M, Hodl C, Sleytr UB (1993) Large-scale recrystallization of the S-layer of Bacillus-Coagulans E38-66 at the air-water-interface and on lipid films. J Bacteriol 175(9):2762–2766PubMedPubMedCentralGoogle Scholar
  61. 61.
    Prive GG, Anderson DH, Wesson L, Cascio D, Eisenberg D (1999) Packed protein bilayers in the 0.90 angstrom resolution structure of a designed alpha helical bundle. Protein Sci 8(7):1400–1409CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pum D, Toca-Herrera JL, Sleytr UB (2013) S-layer protein self-assembly. Int J Mol Sci 14(2):2484–2501. doi: 10.3390/ijms14022484 Google Scholar
  63. 63.
    Sleytr UB, Schuster B, Egelseer EM, Pum D (2014) S-layers: principles and applications. Fems Microbiol Rev 38(5):823–864. doi: 10.1111/1574-6976.12063 Google Scholar
  64. 64.
    Brodin JD, Ambroggio XI, Tang CY, Parent KN, Baker TS, Tezcan FA (2012) Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat Chem 4(5):375–382. doi: 10.1038/Nchem.1290 Google Scholar
  65. 65.
    Brodin JD, Carr JR, Sontz PA, Tezcan FA (2014) Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. P Natl Acad Sci USA 111(8):2897–2902. doi: 10.1073/pnas.1319866111 Google Scholar
  66. 66.
    Castelletto V, Hamley IW, Cenker C, Olsson U (2010) Influence of salt on the self-assembly of two model Amyloid Heptapeptides. J Phys Chem B 114(23):8002–8008. doi: 10.1021/jp102744g Google Scholar
  67. 67.
    Castelletto V, Hamley IW, Harris PJF (2008) Self-assembly in aqueous solution of a modified amyloid beta peptide fragment. Biophys Chem 138(1–2):29–35. doi: 10.1016/j.bpc.2008.08.007 Google Scholar
  68. 68.
    Castelletto V, Hamley IW, Harris PJF, Olsson U, Spencer N (2009) Influence of the solvent on the self-assembly of a modified Amyloid beta peptide fragment. I. Morphological investigation. J Phys Chem B 113(29):9978–9987. doi: 10.1021/jp902860a Google Scholar
  69. 69.
    Chothia C, Levitt M, Richardson D (1981) Helix to helix packing in proteins. J Mol Biol 145(1):215–250CrossRefPubMedGoogle Scholar
  70. 70.
    Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembled arginine-coated peptide nanosheets in water. Chem Commun 49(18):1850–1852. doi: 10.1039/c3cc39057h Google Scholar
  71. 71.
    Hamley IW, Dehsorkhi A, Castelletto V, Furzeland S, Atkins D, Seitsonen J, Ruokolainen J (2013) Reversible helical unwinding transition of a self-assembling peptide amphiphile. Soft Matter 9(39):9290–9293. doi: 10.1039/c3sm51725j Google Scholar
  72. 72.
    Dai B, Li D, Xi W, Luo F, Zhang X, Zou M, Cao M, Hu J, Wang W, Wei G, Zhang Y, Liu C (2015) Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proc Natl Acad Sci U S A 112(10):2996–3001. doi: 10.1073/pnas.1416690112 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Jang HS, Lee JH, Park YS, Kim YO, Park J, Yang TY, Jin K, Lee J, Park S, You JM, Jeong KW, Shin A, Oh IS, Kwon MK, Kim YI, Cho HH, Han HN, Kim Y, Chang YH, Paik SR, Nam KT, Lee YS (2014) Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nat Commun 5:ARTN 3665. doi: 10.1038/ncomms4665
  74. 74.
    Jiang T, Vail OA, Jiang Z, Zuo X, Conticello VP (2015) Rational design of multilayer collagen nanosheets with compositional and structural control. J Am Chem Soc 137(24):7793–7802. doi: 10.1021/jacs.5b03326 CrossRefPubMedGoogle Scholar
  75. 75.
    Jiang T, Xu CF, Liu Y, Liu Z, Wall JS, Zuo XB, Lian TQ, Salaita K, Ni CY, Pochan D, Conticello VP (2014) Structurally defined nanoscale sheets from self-assembly of collagen-mimetic peptides. J Am Chem Soc 136(11):4300–4308. doi: 10.1021/ja412867z Google Scholar
  76. 76.
    Jiang T, Xu CF, Zuo XB, Conticello VP (2014) Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide. Angew Chem Int Edit 53(32):8367–8371. doi: 10.1002/anie.201403780 Google Scholar
  77. 77.
    Matmour R, De Cat I, George SJ, Adriaens W, Leclere P, Bomans PHH, Sommerdijk NAJM, Gielen JC, Christianen PCM, Heldens JT, van Hest JCM, Lowik DWPM, De Feyter S, Meijer EW, Schenning APHJ (2008) Oligo(p-phenylenevinylene)-peptide conjugates: synthesis and self-assembly in solution and at the solid-liquid interface. J Am Chem Soc 130(44):14576–14583. doi: 10.1021/ja803026j Google Scholar
  78. 78.
    Matthaei JF, DiMaio F, Richards JJ, Pozzo LD, Baker D, Baneyx F (2015) Designing two-dimensional protein arrays through fusion of multimers and interface mutations. Nano Lett 15(8):5235–5239. doi: 10.1021/acs.nanolett.5b01499 CrossRefPubMedGoogle Scholar
  79. 79.
    McGuinness K, Khan IJ, Nanda V (2014) Morphological diversity and polymorphism of self-assembling collagen peptides controlled by length of hydrophobic domains. Acs Nano 8(12):12514–12523. doi: 10.1021/nn505369d Google Scholar
  80. 80.
    Nam KT, Shelby SA, Choi PH, Marciel AB, Chen R, Tan L, Chu TK, Mesch RA, Lee BC, Connolly MD, Kisielowski C, Zuckermann RN (2010) Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater 9(5):454–460. doi: 10.1038/Nmat2742 Google Scholar
  81. 81.
    Olivier GK, Cho A, Sanii B, Connolly MD, Tran H, Zuckermann RN (2013) Antibody-Mimetic peptoid nanosheets for molecular recognition. Acs Nano 7(10):9276–9286. doi: 10.1021/nn403899y Google Scholar
  82. 82.
    Pashuck ET, Stupp SI (2010) Direct observation of morphological tranformation from twisted ribbons into helical ribbons. J Am Chem Soc 132(26):8819−8821. doi: 10.1021/ja100613w Google Scholar
  83. 83.
    Przybyla DE, Chmielewski J (2010) Metal-triggered collagen peptide disk formation. J Am Chem Soc 132(23):7866−7867. doi: 10.1021/ja103148t Google Scholar
  84. 84.
    Robertson EJ, Oliver GK, Qian M, Proulx C, Zuckermann RN, Richmond GL (2014) Assembly and molecular order of two-dimensional peptoid nanosheets through the oil-water interface. P Natl Acad Sci USA 111(37):13284–13289. doi: 10.1073/pnas.1414843111 Google Scholar
  85. 85.
    Sanii B, Haxton TK, Olivier GK, Cho A, Barton B, Proulx C, Whitelam S, Zuckermann RN (2014) Structure-determining step in the hierarchical assembly of peptoid nanosheets. Acs Nano 8(11):11674–11684. doi: 10.1021/nn505007u Google Scholar
  86. 86.
    Sanii B, Kudirka R, Cho A, Venkateswaran N, Olivier GK, Olson AM, Tran H, Harada RM, Tan L, Zuckermann RN (2011) Shaken, not stirred: collapsing a peptoid monolayer to produce free-floating, stable nanosheets. J Am Chem Soc 133(51):20808–20815. doi: 10.1021/ja206199d Google Scholar
  87. 87.
    Xu F, Khan IJ, McGuinness K, Parmar AS, Silva T, Murthy NS, Nanda V (2013) Self-assembly of left- and right-handed molecular screws. J Am Chem Soc 135(50):18762–18765. doi: 10.1021/ja4106545 Google Scholar
  88. 88.
    Sinclair JC, Davies KM, Venien-Bryan C, Noble ME (2011) Generation of protein lattices by fusing proteins with matching rotational symmetry. Nat Nanotechnol 6(9):558–562. doi: 10.1038/nnano.2011.122 CrossRefPubMedGoogle Scholar
  89. 89.
    Childers WS, Anthony NR, Mehta AK, Berland KM, Lynn DG (2012) Phase networks of cross-beta peptide assemblies. Langmuir 28(15):6386–6395. doi: 10.1021/la300143j CrossRefPubMedGoogle Scholar
  90. 90.
    Lu K, Jacob J, Thiyagarajan P, Conticello VP, Lynn DG (2003) Exploiting amyloid fibril lamination for nanotube self-assembly. J Am Chem Soc 125(21):6391–6393. doi: 10.1021/ja0341642 CrossRefPubMedGoogle Scholar
  91. 91.
    Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D (2011) De novo enzyme design using Rosetta3. Plos One 6(5):e19230. doi: 10.1371/journal.pone.0019230 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Lai YT, Cascio D, Yeates TO (2012) Structure of a 16-nm cage designed by using protein oligomers. Science 336(6085):1129. doi: 10.1126/science.1219351 CrossRefPubMedGoogle Scholar
  93. 93.
    Lai YT, Tsai KL, Sawaya MR, Asturias FJ, Yeates TO (2013) Structure and flexibility of nanoscale protein cages designed by symmetric self-assembly. J Am Chem Soc 135(20):7738–7743. doi: 10.1021/ja402277f CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Padilla JE, Colovos C, Yeates TO (2001) Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc Natl Acad Sci U S A 98(5):2217–2221. doi: 10.1073/pnas.041614998 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Lai YT, Reading E, Hura GL, Tsai KL, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO (2014) Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 6(12):1065–1071. doi: 10.1038/nchem.2107 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Fairman R, Chao HG, Lavoie TB, Villafranca JJ, Matsueda GR, Novotny J (1996) Design of heterotetrameric coiled coils: evidence for increased stabilization by Glu(−)-Lys(+) ion pair interactions. Biochemistry 35(9):2824–2829. doi: 10.1021/bi952784c CrossRefPubMedGoogle Scholar
  97. 97.
    Plass KE, Grzesiak AL, Matzger AJ (2007) Molecular packing and symmetry of two-dimensional crystals. Acc Chem Res 40(4):287–293. doi: 10.1021/ar0500158 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ChemistryEmory UniversityAtlantaUSA

Personalised recommendations