Design of Redox-Active Peptides: Towards Functional Materials

  • Dayn Joseph Sommer
  • Rafael Alcala-Torano
  • Zahra Bahrami Dizicheh
  • Giovanna GhirlandaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 940)


In nature, the majority of processes that occur in the cell involve the cycling of electrons and protons, changing the reduction and oxidation state of substrates to alter their chemical reactivity and usefulness in vivo. One of the most relevant examples of these processes is the electron transport chain, a series of oxidoreductase proteins that shuttle electrons through well-defined pathways, concurrently moving protons across the cell membrane. Inspired by these processes, researchers have sought to develop materials to mimic natural systems for a number of applications, including fuel production. The most common cofactors found in proteins to carry out electron transfer are iron sulfur clusters and porphyrin-like molecules. Both types have been studied within natural proteins, such as in photosynthetic machinery or soluble electron carriers; in parallel, an extensive literature has developed over recent years attempting to model and study these cofactors within peptide-based materials. This chapter will focus on major designs that have significantly advanced the field.


Peptide scaffolds Redox enzymes Iron sulfur clusters Electron transfer Hydrogenases Oxidoreductases Porphyrins Functional materials 


  1. 1.
    Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014) Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 114:4366–4469PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Moser CC, Anderson JL, Dutton PL (2010) Guidelines for tunneling in enzymes. Biochim Biophys Acta 1797:1573–1586PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Gray HB, Winkler JR (1996) Electron transfer in proteins. Annu Rev Biochem 65:537–561PubMedCrossRefGoogle Scholar
  4. 4.
    Bjerrum MJ, Casimiro DR, Chang IJ, Di Bilio AJ, Gray HB, Hill MG, Langen R, Mines GA, Skov LK, Winkler JR et al (1995) Electron transfer in ruthenium-modified proteins. J Bioenerg Biomembr 27:295–302PubMedCrossRefGoogle Scholar
  5. 5.
    Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802PubMedCrossRefGoogle Scholar
  6. 6.
    Akhade SA, Luo W, Nie X, Bernstein NJ, Asthagiri A, Janik MJ (2014) Poisoning effect of adsorbed CO during CO2 electroreduction on late transition metals. Phys Chem Chem Phys 16:20429–20435PubMedCrossRefGoogle Scholar
  7. 7.
    Bassegoda A, Madden C, Wakerley DW, Reisner E, Hirst J (2014) Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. J Am Chem Soc 136:15473–15476PubMedCrossRefGoogle Scholar
  8. 8.
    DuBois DL (2014) Development of molecular electrocatalysts for energy storage. Inorg Chem 53:3935–3960PubMedCrossRefGoogle Scholar
  9. 9.
    Armstrong FA, Hirst J (2011) Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc Natl Acad Sci U S A 108:14049–14054PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Leger C, Elliott SJ, Hoke KR, Jeuken LJ, Jones AK, Armstrong FA (2003) Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms. Biochemistry 42:8653–8662PubMedCrossRefGoogle Scholar
  11. 11.
    Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107:4273–4303PubMedCrossRefGoogle Scholar
  12. 12.
    Ghirardi ML, Posewitz MC, Maness P-C, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic. Annu Rev Plant Bio 58:71–91CrossRefGoogle Scholar
  13. 13.
    Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure (Cambridge, MA) 19:1038–1052CrossRefGoogle Scholar
  14. 14.
    Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501PubMedCrossRefGoogle Scholar
  15. 15.
    Felton GAN, Mebi CA, Petro BJ, Vannucci AK, Evans DH, Glass RS, Lichtenberger DL (2009) Review of electrochemical studies of complexes containing the Fe2S2 core characteristic of [FeFe]-hydrogenases including catalysis by these complexes of the reduction of acids to form dihydrogen. J Organomet Chem 694:2681–2699CrossRefGoogle Scholar
  16. 16.
    Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994PubMedCrossRefGoogle Scholar
  17. 17.
    Muckerman JT, Fujita E (2011) Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime. Chem Commun 47:12456–12458CrossRefGoogle Scholar
  18. 18.
    Ferry JG (2995) CO dehydrogenase. Annu Rev Biochem 49:305–333Google Scholar
  19. 19.
    Ragsdale SW, Kumar M (1996) Nickel-containing carbon monoxide dehydrogenase/acetryl-CoA synthase. Chem Rev 96:2515–2539PubMedCrossRefGoogle Scholar
  20. 20.
    Tishkov VI, Popov VO (2004) Catalytic mechanism and application of format dehydrogenase. Biochem Mosc 69:1252–1267CrossRefGoogle Scholar
  21. 21.
    Popov VO, Lamzin VS (1994) NAD + −dependent formate dehydrogenase. Biochem J 301:625–643PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Agarwal J, Fujita E, Schaefer HF, Muckerman JT (2012) Mechanisms for CO production from CO2 using reduced rhenium tricarbonyl catalysts. J Am Chem Soc 134:5180–5186PubMedCrossRefGoogle Scholar
  23. 23.
    Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s(−)(1) for H(2) production. Science (Washington, D C) 333:863–866CrossRefGoogle Scholar
  24. 24.
    Roy A, Madden C, Ghirlanda G (2012) Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic. Chem Commun 48:9816CrossRefGoogle Scholar
  25. 25.
    Sommer DJ, Vaughn MD, Ghirlanda G (2014) Protein secondary-shell interactions enhance the photoinduced hydrogen production of cobalt protoporphyrin IX. Chem Commun 50:15852–15855CrossRefGoogle Scholar
  26. 26.
    Beinert H, Holm RH, Munck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science (Washington, D C) 277:653–659CrossRefGoogle Scholar
  27. 27.
    Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5:2–15PubMedCrossRefGoogle Scholar
  28. 28.
    He C, Wang M, Zhang X, Wang Z, Chen C, Liu J, Akermark B, Sun L (2004) An unusual cyclization in a bis(cysteinyl-S) diiron complex related to the active site of Fe-only hydrogenases. Angew Chem Int Ed 43:3571–3574CrossRefGoogle Scholar
  29. 29.
    Jones AK, Lichtenstein BR, Dutta A, Gordon G, Dutton PL (2007) Synthetic hydrogenases: incorporation of an iron carbonyl thiolate into a designed peptide. J Am Chem Soc 129:14844–14845PubMedCrossRefGoogle Scholar
  30. 30.
    Sano Y, Onoda A, Hayashi T (2011) A hydrogenase model system based on the sequence of cytochrome c: photochemical hydrogen evolution in aqueous media. Chem Commun 47:8229–8231CrossRefGoogle Scholar
  31. 31.
    Sano Y, Onoda A, Hayashi T (2012) Photocatalytic hydrogen evolution by a diiron hydrogenase model based on a peptide fragment of cytochrome c(556) with an attached diiron carbonyl cluster and an attached ruthenium photosensitizer. J Inorg Biochem 108:159–162PubMedCrossRefGoogle Scholar
  32. 32.
    Roy S, Shinde S, Hamilton GA, Hartnett HE, Jones AK (2011) Artificial [FeFe]-hydrogenase: on resin modification of an amino acid to anchor a hexacarbonyldiiron cluster in a peptide framework. Eur J Inorg Chem 2011:1050–1055CrossRefGoogle Scholar
  33. 33.
    Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons' T, Berggren G, Nothl J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T (2013) Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat Chem Biol 9:607–609PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66–69PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Koay MS, Antonkine ML, Gaertner W, Lubitz W (2008) Modelling low-potential [Fe4S4] clusters in proteins. Chem Biodiver 5:1571–1587CrossRefGoogle Scholar
  36. 36.
    Bian S, Cowan J a (1999) Protein-bound iron–sulfur centers. Form, function, and assembly. Coord Chem Rev 190–192:1049–1066CrossRefGoogle Scholar
  37. 37.
    Venkateswara Rao P, Holm RH (2004) Synthetic analogues of the active sites of iron-sulfur proteins. Chem Rev 104:527–559PubMedCrossRefGoogle Scholar
  38. 38.
    Busch JL, Breton JL, Bartlett BM, James R, Hatchikian EC, Thomson AJ (1996) Expression in Escherichia coli and characterization of a reconstituted recombinant 7Fe ferredoxin from Desulfovibrio africanus, Biochem J 314 (Pt 1):63–71CrossRefGoogle Scholar
  39. 39.
    Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281PubMedCrossRefGoogle Scholar
  40. 40.
    Kowal AT, Werth MT, Manodori A, Cecchini G, Schröder I, Gunsalus RP, Johnson MK (1995) Effect of cysteine to serine mutations on the properties of the [4Fe4S] center in Escherichia coli fumarate reductase. Biochemistry 34:12284–12293PubMedCrossRefGoogle Scholar
  41. 41.
    Knapp MJ, Krzystek J, Brunel LC, Hendrickson DN (2000) High-frequency EPR study of the ferrous ion in the reduced rubredoxin model. Inorg Chem 39:281–288PubMedCrossRefGoogle Scholar
  42. 42.
    Farinas E, Regan L (1998) The de novo design of a rubredoxin-like Fe site. Protein Sci 7:1939–1946PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Benson DE, Wisz MS, Liu W, Hellinga HW (1998) Construction of a novel redox protein by rational design: conversion of a disulfide bridge into a mononuclear iron-sulfur center. Biochemistry 37:7070–7076PubMedCrossRefGoogle Scholar
  44. 44.
    Lombardi A, Marasco D, Maglio O, Di Costanzo L, Nastri F, Pavone V (2000) Miniaturized metalloproteins: application to iron-sulfur proteins. Proc Natl Acad Sci U S A 97:11922–11927PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Nanda V, Rosenblatt MM, Osyczka A, Kono H, Getahun Z, Dutton PL, Saven JG, Degrado WF (2005) De novo design of a redox-active minimal rubredoxin mimic. J Am Chem Soc 127:5804–5805PubMedCrossRefGoogle Scholar
  46. 46.
    Jacques A, Clemancey M, Blondin G, Fourmond V, Latour JM, Seneque O (2013) A cyclic peptide-based redox-active model of rubredoxin. Chem Commun 49:2915–2917CrossRefGoogle Scholar
  47. 47.
    Jacques A, Latour JM, Seneque O (2014) Peptide-based FeS4 complexes: the zinc ribbon fold is unsurpassed to stabilize both the FeII and FeIII states. Dalton Trans 43:3922–3930PubMedCrossRefGoogle Scholar
  48. 48.
    Meyer J (2008) Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J Biol Inorg Chem 13:157–170PubMedCrossRefGoogle Scholar
  49. 49.
    Mulholland SE, Gibney BR, Rabanal F, Dutton PL (1999) Determination of nonligand amino acids critical to [4Fe-4S]2+/+ assembly in ferredoxin maquettes. Biochemistry 38:10442–10448PubMedCrossRefGoogle Scholar
  50. 50.
    Gibney BR, Mulholland SE, Rabanal F, Dutton PL (1996) Ferredoxin and ferredoxin-heme maquettes. Proc Natl Acad Sci U S A 93:15041–15046PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Laplaza CE, Holm RH (2001) Helix-loop-helix peptides as scaffolds for the construction of bridged metal assemblies in proteins: the spectroscopic a-cluster structure in carbon monoxide dehydrogenase. J Am Chem Soc 123:10255–10264PubMedCrossRefGoogle Scholar
  52. 52.
    Scott MP, Biggins J (1997) Introduction of a [4Fe-4S (S-cys)4] + 1,+2 iron-sulfur center into a four-α helix protein using design parameters from the domain of the Fx cluster in the photosystem I reaction center. Protein Sci 6:340–346PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Antonkine ML, Koay MS, Epel B, Breitenstein C, Gopta O, Gaertner W, Bill E, Lubitz W (2009) Synthesis and characterization of de novo designed peptides modelling the binding sites of [4Fe-4S] clusters in photosystem I. Biochim Biophys Acta Bioenerg 1787:995–1008CrossRefGoogle Scholar
  54. 54.
    Antonkine ML, Maes EM, Czernuszewicz RS, Breitenstein C, Bill E, Falzone CJ, Balasubramanian R, Lubner C, Bryant DA, Golbeck JH (2007) Chemical rescue of a site-modified ligand to a [4Fe-4S] cluster in PsaC, a bacterial-like dicluster ferredoxin bound to photosystem I. Biochim Biophys Acta Bioenerg 1767:712–724CrossRefGoogle Scholar
  55. 55.
    Hoppe A, Pandelia M-E, Gaertner W, Lubitz W (2011) [Fe4S4]- and [Fe3S4]-cluster formation in synthetic peptides. Biochim Biophys Acta Bioenerg 1807:1414–1422CrossRefGoogle Scholar
  56. 56.
    Grzyb J, Xu F, Nanda V, Luczkowska R, Reijerse E, Lubitz W, Noy D (2012) Empirical and computational design of iron-sulfur cluster proteins. Biochim Biophys Acta 1817:1256–1262PubMedCrossRefGoogle Scholar
  57. 57.
    Grzyb J, Xu F, Weiner L, Reijerse EJ, Lubitz W, Nanda V, Noy D (2010) De novo design of a non-natural fold for an iron-sulfur protein: alpha-helical coiled-coil with a four-iron four-sulfur cluster binding site in its central core. Biochim Biophys Acta 1797:406–413PubMedCrossRefGoogle Scholar
  58. 58.
    Roy A, Sarrou I, Vaughn MD, Astashkin AV, Ghirlanda G (2013) De Novo design of an artificial Bis[4Fe-4S] binding protein. Biochemistry 52:7586–7594PubMedCrossRefGoogle Scholar
  59. 59.
    Ogihara NL, Ghirlanda G, Bryson JW, Gingery M, DeGrado WF, Eisenberg D (2001) Design of three-dimensional domain-swapped dimers and fibrous oligomers. Proc Natl Acad Sci U S A 98:1404–1409PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sommer DJ, Roy A, Astashkin A, Ghirlanda G (2015) Modulation of cluster incorporation specificity in a de novo iron-sulfur cluster binding peptide. Peptide Science 104:412PubMedCrossRefGoogle Scholar
  61. 61.
    Roy A, Sommer DJ, Schmitz RA, Brown CL, Gust D, Astashkin A, Ghirlanda G (2014) A De Novo designed 2[4Fe-4S] Ferredoxin mimic mediates electron transfer. J Am Chem Soc 136:17343–17349PubMedCrossRefGoogle Scholar
  62. 62.
    L'Her M, Pondaven A (2003) 104 - Electrochemistry of Phthalocyanines. In: Guilard KMKMS (ed) The porphyrin handbook. Academic, Amsterdam, pp 117–169CrossRefGoogle Scholar
  63. 63.
    Shelnutt JA, Song XZ, Ma JG, Jia SL, Jentzen W, Medforth CJ (1998) Nonplanar porphyrins and their significance in proteins. Chem Soc Rev 27:31–41CrossRefGoogle Scholar
  64. 64.
    Chan MK (2001) Recent advances in heme-protein sensors. Curr Opin Chem Biol 5:216–222PubMedCrossRefGoogle Scholar
  65. 65.
    Feng JJ, Zhao G, Xu JJ, Chen HY (2005) Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Anal Biochem 342:280–286PubMedCrossRefGoogle Scholar
  66. 66.
    Robertson DE, Farid RS, Moser CC, Urbauer JL, Mulholland SE, Pidikiti R, Lear JD, Wand AJ, DeGrado WF, Dutton PL (1994) Design and synthesis of multi-haem proteins. Nature 368:425–432PubMedCrossRefGoogle Scholar
  67. 67.
    Takahashi M, Ueno A, Mihara H (2000) Peptide design based on an antibody complementarity-determining region (CDR): construction of porphyrin-binding peptides and their affinity maturation by a combinatorial method. Chemistry 6:3196–3203PubMedCrossRefGoogle Scholar
  68. 68.
    Dunetz JR, Sandstrom C, Young ER, Baker P, Van Name SA, Cathopolous T, Fairman R, de Paula JC, Akerfeldt KS (2005) Self-assembling porphyrin-modified peptides. Org Lett 7:2559–2561PubMedCrossRefGoogle Scholar
  69. 69.
    Solomon LA, Kodali G, Moser CC, Dutton PL (2014) Engineering the assembly of heme cofactors in man-made proteins. J Am Chem Soc 136:3192–3199PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Faiella M, Maglio O, Nastri F, Lombardi A, Lista L, Hagen WR, Pavone V (2012) De novo design, synthesis and characterisation of MP3, a new catalytic four-helix bundle hemeprotein. Chemistry 18:15960–15971PubMedCrossRefGoogle Scholar
  71. 71.
    Cordova JM, Noack PL, Hilcove SA, Lear JD, Ghirlanda G (2007) Design of a functional membrane protein by engineering a heme-binding site in glycophorin A. J Am Chem Soc 129:512–518PubMedCrossRefGoogle Scholar
  72. 72.
    Shinde S, Cordova JM, Woodrum BW, Ghirlanda G (2012) Modulation of function in a minimalist heme-binding membrane protein. J Biol Inorg Chem 17:557–564PubMedCrossRefGoogle Scholar
  73. 73.
    Korendovych IV, Senes A, Kim YH, Lear JD, Fry HC, Therien MJ, Blasie JK, Walker FA, DeGrado WF (2010) De Novo design and molecular assembly of a transmembrane Diporphyrin-binding protein complex. J Am Chem Soc 132:15516–15518PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mahajan M, Bhattacharjya S (2014) Designed di-heme binding helical transmembrane protein. ChemBioChem: A European Journal of Chemical Biology 15:1257–1262PubMedCrossRefGoogle Scholar
  75. 75.
    Farid TA, Kodali G, Solomon LA, Lichtenstein BR, Sheehan MM, Fry BA, Bialas C, Ennist NM, Siedlecki JA, Zhao Z, Stetz MA, Valentine KG, Anderson JL, Wand AJ, Discher BM, Moser CC, Dutton PL (2013) Elementary tetrahelical protein design for diverse oxidoreductase functions. Nat Chem Biol 9:826–833PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fry HC, Lehmann A, Saven JG, DeGrado WF, Therien MJ (2010) Computational design and elaboration of a de Novo Heterotetrameric alpha-Helical protein that selectively binds an Emissive Abiological (Porphinato)zinc Chromophore. J Am Chem Soc 132:3997–4005PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Braun P, Goldberg E, Negron C, von Jan M, Xu F, Nanda V, Koder RL, Noy D (2011) Design principles for chlorophyll-binding sites in helical proteins. Proteins Struct Funct Bioinf 79:463–476CrossRefGoogle Scholar
  78. 78.
    Brodin JD, Ambroggio XI, Tang C, Parent KN, Baker TS, Tezcan FA (2012) Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat Chem 4:375–382PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Brodin JD, Carr JR, Sontz PA, Tezcan FA (2014) Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. Proc Natl Acad Sci U S A 111:2897–2902PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Huard DJE, Kane KM, Tezcan FA (2013) Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nat Chem Biol 9:169–176PubMedCrossRefGoogle Scholar
  81. 81.
    Salgado EN, Lewis RA, Mossin S, Rheingold AL, Tezcan FA (2009) Control of protein Oligomerization symmetry by metal coordination: C2 and C3 symmetrical assemblies through CuII and NiII Coordination. Inorg Chem 48:2726–2728PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Salgado EN, Radford RJ, Tezcan FA (2010) Metal-directed protein self-assembly. Acc Chem Res 43:661–672PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sontz PA, Song WJ, Tezcan FA (2014) Interfacial metal coordination in engineered protein and peptide assemblies. Curr Opin Chem Biol 19:42–49PubMedCrossRefGoogle Scholar
  84. 84.
    Kleingardner JG, Kandemir B, Bren KL (2014) Hydrogen evolution from neutral water under aerobic conditions catalyzed by cobalt microperoxidase-11. J Am Chem Soc 136:4–7PubMedCrossRefGoogle Scholar
  85. 85.
    Lee CH, Dogutan DK, Nocera DG (2011) Hydrogen generation by hangman metalloporphyrins. J Am Chem Soc 133:8775–8777PubMedCrossRefGoogle Scholar
  86. 86.
    Bordeaux M, Singh R, Fasan R (2014) Intramolecular C(sp(3))-H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts. Bioorg Med Chem 22:5697–5704PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Sreenilayam G, Fasan R (2015) Myoglobin-catalyzed intermolecular carbene N-H insertion with arylamine substrates. Chem Commun 51:1532–1534CrossRefGoogle Scholar
  88. 88.
    Coelho PS, Brustad EM, Kannan A, Arnold FH (2013) Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science (Washington, D C) 339:307–310CrossRefGoogle Scholar
  89. 89.
    Ghirlanda G (2013) Computational biology a recipe for ligand-binding proteins. Nature 501:177–178PubMedCrossRefGoogle Scholar
  90. 90.
    Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature (London, U K) 501:212–216CrossRefGoogle Scholar
  91. 91.
    Lichtenstein BR, Moorman VR, Cerda JF, Wand AJ, Dutton PL (2012) Electrochemical and structural coupling of the naphthoquinone amino acid. Chem Commun 48:1997–1999CrossRefGoogle Scholar
  92. 92.
    Li WW, Hellwig P, Ritter M, Haehnel W (2006) De novo design, synthesis, and characterization of quinoproteins. Chemistry 12:7236–7245PubMedCrossRefGoogle Scholar
  93. 93.
    Hay S, Wallace BB, Smith TA, Ghiggino KP, Wydrzynski T (2004) Protein engineering of cytochrome b562 for quinone binding and light-induced electron transfer. Proc Natl Acad Sci U S A 101:17675–17680PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Sakamoto S, Ito A, Kudo K, Yoshikawa S (2004) De novo design, synthesis, and function of semiartificial myoglobin conjugated with coiled-coil two-alpha-helix peptides. Chem Eur J 10:3717–3726PubMedCrossRefGoogle Scholar
  95. 95.
    Frew JE, Hill HAO (1988) Direct and indirect electron transfer between electrodes and redox proteins. Eur J Biochem 172:261–269PubMedCrossRefGoogle Scholar
  96. 96.
    Miller LL, Van De Mark MR (1978) Electrode surface modification via polymer adsorption. J Am Chem Soc 100:639–640CrossRefGoogle Scholar
  97. 97.
    Lisdat F, Dronov R, Mohwald H, Scheller FW, Kurth DG (2009) Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains. Chem Commun 274–283Google Scholar
  98. 98.
    Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 1:4878CrossRefGoogle Scholar
  99. 99.
    Grigoryan G, Kim YH, Acharya R, Axelrod K, Jain RM, Willis L, Drndic M, Kikkawa JM, DeGrado WF (2011) Computational design of virus-like protein assemblies on carbon nanotube surfaces. Science (Washington, D C) 332:1071–1076CrossRefGoogle Scholar
  100. 100.
    Della Pia EA, Macdonald JE, Elliott M, Jones DD (2012) Direct binding of a redox protein for single-molecule electron transfer measurements. Small 8:2341–2344PubMedCrossRefGoogle Scholar
  101. 101.
    Tammeveski K, Tenno TT, Mashirin AA, Hillhouse EW, Manning P, McNeil CJ (1998) Superoxide electrode based on covalently immobilized cytochrome c: modelling studies. Free Radic Biol Med 25:973–978PubMedCrossRefGoogle Scholar
  102. 102.
    Delamar M, Hitmi R, Pinson J, Savéant JM (1992) Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J Am Chem Soc 114:5883–5884CrossRefGoogle Scholar
  103. 103.
    Polsky R, Harper JC, Dirk SM, Arango DC, Wheeler DR, Brozik SM (2007) Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection. LangmuirACS J Surf Colloids 23:364–366CrossRefGoogle Scholar
  104. 104.
    Harper JC, Polsky R, Wheeler DR, Brozik SM (2008) Maleimide-activated aryl diazonium salts for electrode surface functionalization with biological and redox-active molecules. Langmuir ACS J Surf Colloids 24:2206–2211CrossRefGoogle Scholar
  105. 105.
    Pardo-Yissar V, Katz E, Willner I, Kotlyar AB, Sanders C, Lill H (2000) Biomaterial engineered electrodes for bioelectronics. Farad Discuss 116:119–134CrossRefGoogle Scholar
  106. 106.
    Bourdillon C, Demaille C, Gueris J, Moiroux J, Savéant JM (1993) A fully active monolayer enzyme electrode derivatized by antigen-antibody attachment. J Am Chem Soc 115:12264–12269CrossRefGoogle Scholar
  107. 107.
    Bourdillon C, Demaille C, Moiroux J, Savéant JM (1994) Step-by-step immunological construction of a fully active multilayer enzyme electrode. J Am Chem Soc 116:10328–10329CrossRefGoogle Scholar
  108. 108.
    Häussling L, Michel B, Ringsdorf H, Rohrer H (1991) Direct observation of streptavidin specificity adsorbed on biotin-functionalized self-assembled monolayers with the scanning tunneling microscope. Angew Chem Int Ed 30:569–572CrossRefGoogle Scholar
  109. 109.
    Hoshi T, Anzai J, Osa T (1995) Controlled deposition of glucose oxidase on platinum electrode based on an avidin/biotin system for the regulation of output current of glucose sensors. Anal Chem 67:770–774PubMedCrossRefGoogle Scholar
  110. 110.
    Pantano P, Morton TH, Kuhr WG (1991) Enzyme-modified carbon-fiber microelectrodes with millisecond response times. J Am Chem Soc 113:1832–1833CrossRefGoogle Scholar
  111. 111.
    Zayats M, Willner B, Willner I (2008) Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes. Electroanalysis 20:583–601CrossRefGoogle Scholar
  112. 112.
    Das A, Hecht MH (2007) Peroxidase activity of de novo heme proteins immobilized on electrodes. J Inorg Biochem 101:1820–1826PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Walt D, Agayn V (1994) The chemistry of enzyme and protein immobilization with glutaraldeyde. Trends Anal Chem 13:425–430CrossRefGoogle Scholar
  114. 114.
    Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198–1205CrossRefGoogle Scholar
  115. 115.
    Miao Y, Tan SN (2000) Amperometric hydrogen peroxide biosensor based on immobilization of peroxidase in chitosan matrix crosslinked with glutaraldehyde. Analyst 125:1591–1594CrossRefGoogle Scholar
  116. 116.
    Gregg BA, Heller A (1990) Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Anal Chem 62:258–263PubMedCrossRefGoogle Scholar
  117. 117.
    Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307CrossRefGoogle Scholar
  118. 118.
    Cosnier S, Holzinger M (2011) Electrosynthesized polymers for biosensing. Chem Soc Rev 40:2146–2156PubMedCrossRefGoogle Scholar
  119. 119.
    Saaem I, Tian J (2007) e-beam nanopatterned photo-responsive bacteriorhodopsin-containing hydrogels. Adv Mat 19:4268–4271CrossRefGoogle Scholar
  120. 120.
    Yan J, Pedrosa VA, Simonian AL, Revzin A (2010) Immobilizing enzymes onto electrode arrays by hydrogel photolithography to fabricate multi-analyte electrochemical biosensors. ACS Appl Mater Inter 2:748–755CrossRefGoogle Scholar
  121. 121.
    Wheeldon IR, Gallaway JW, Barton SC, Banta S (2008) Bioelectrocatalytic hydrogels from electron-conducting metallopolypeptides coassembled with bifunctional enzymatic building blocks. Proc Natl Acad Sci U S A 105:15275–15280PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Richardson JS, Richardson DC (1989) The de novo design of protein structures. Trends Biochem Sci 14:304–309PubMedCrossRefGoogle Scholar
  123. 123.
    Leger C, Bertrand P (2008) Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem Rev 108:2379–2438PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dayn Joseph Sommer
    • 1
  • Rafael Alcala-Torano
    • 1
  • Zahra Bahrami Dizicheh
    • 1
  • Giovanna Ghirlanda
    • 1
    Email author
  1. 1.School of Molecular SciencesArizona State UniversityTempeUSA

Personalised recommendations