Inflammation and Cancer: The Role of Lipid Signaling in the Continuum Between Two Ends of the Tumor Spectrum

  • Megan L. Sulciner
  • Molly M. Gilligan
  • Bruce R. Zetter
  • Dipak Panigrahy


Inflammation and cancer have a long and contentious history. Currently, there are two lenses through which the role of inflammation in cancer can be viewed. Substantial evidence suggests that inflammation can not only propagate, but even initiate cancer pathogenesis. However, emerging studies indicate that inflammation may alternatively enhance host containment and destruction of tumorigenic cells. Herein, we explore how our understanding of inflammation in cancer has evolved, from the first identification of excessive inflammation in tumors two millennia ago to the complex association between inflammation and cancer pathogenesis with the recent emergence of immune-harnessing cancer therapies. We discuss the dynamic roles of various immune cells, cytokines, and specific lipid autacoid signaling in cancer, focusing on fatty acid-derived lipid mediators such as prostaglandin E2. We contrast the pro-tumorigenic and anti-tumorigenic functions of immune cells and lipid mediators, while highlighting how their functions can be dramatically altered by the tumor microenvironment.


Inflammation Cancer Tumor Lipids Cytokines Immune cells Macrophages Natural killer cells T cells (T lymphocytes) B cells (B lymphocytes) Dendritic cells Inflammatory score Prostaglandin E2 Annexin A1 C-reactive protein (CRP) 


  1. 1.
    Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012;30:677–706. doi: 10.1146/annurev-immunol-020711-075008.PubMedCrossRefGoogle Scholar
  2. 2.
    Reedy J. Galen on cancer and related diseases. Clio Med. 1975;10:227–38.PubMedGoogle Scholar
  3. 3.
    Virchow R. Cellular pathology as based upon physiological and pathological histology: twenty lectures delivered in the pathological Institute of Berlin during the months of February, march, and April, 1858. New York: Robert M. De Witt; 1860.Google Scholar
  4. 4.
    Coley WB II. Contribution to the knowledge of sarcoma. Ann Surg. 1891;14:199–220.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9. doi: 10.1056/NEJM198612253152606.PubMedCrossRefGoogle Scholar
  6. 6.
    Coussens LM, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 1999;13:1382–97.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103:481–90.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Di Carlo E, et al. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood. 2001;97:339–45.PubMedCrossRefGoogle Scholar
  9. 9.
    Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15:73–86. doi: 10.1038/nri3789.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. doi: 10.1016/j.cell.2011.02.013.PubMedCrossRefGoogle Scholar
  11. 11.
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44. doi: 10.1038/nature07205.PubMedCrossRefGoogle Scholar
  12. 12.
    Mantovani A, Caprioli V, Gritti P, Spreafico F. Human mature macrophages mediate antibody-dependent cellular cytotoxicity on tumour cells. Transplantation. 1977;24:291–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunol Today. 1992;13:265–70. doi: 10.1016/0167-5699(92)90008-U.PubMedCrossRefGoogle Scholar
  14. 14.
    Balkwill FR, Ward BG, Moodie E, Fiers W. Therapeutic potential of tumor necrosis factor-alpha and gamma-interferon in experimental human ovarian cancer. Cancer Res. 1987;47:4755–8.PubMedGoogle Scholar
  15. 15.
    Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002;13:135–41.PubMedCrossRefGoogle Scholar
  16. 16.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7. doi: 10.1038/nature01322.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pikarsky E, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431:461–6. doi: 10.1038/nature02924.PubMedCrossRefGoogle Scholar
  18. 18.
    Luo JL, Maeda S, Hsu LC, Yagita H, Karin M. Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell. 2004;6:297–305. doi: 10.1016/j.ccr.2004.08.012.PubMedCrossRefGoogle Scholar
  19. 19.
    Elwood PC, et al. Aspirin in the treatment of cancer: reductions in metastatic spread and in mortality: a systematic review and meta-analyses of published studies. PLoS One. 2016;11:e0152402. doi: 10.1371/journal.pone.0152402.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51. doi: 10.1016/j.cell.2010.03.014.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Heuff G, et al. Enhanced tumour growth in the rat liver after selective elimination of Kupffer cells. Cancer Immunol Immunother. 1993;37:125–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Oosterling SJ, et al. Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol. 2005;207:147–55. doi: 10.1002/path.1830.PubMedCrossRefGoogle Scholar
  23. 23.
    Weber C, et al. Macrophage infiltration and alternative activation during wound healing promote MEK1-induced skin carcinogenesis. Cancer Res. 2016;76:805–17. doi: 10.1158/0008-5472.CAN-14-3676.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jaiswal S, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138:271–85. doi: 10.1016/j.cell.2009.05.046.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gabrusiewicz K, et al. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight. 2016;1:e85841. doi: 10.1172/jci.insight.85841.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Chow A, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-kappaB. Sci Rep. 2014;4:5750. doi: 10.1038/srep05750.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kitamura T, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med. 2015;212:1043–59. doi: 10.1084/jem.20141836.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chavez-Galan L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015;6:263. doi: 10.3389/fimmu.2015.00263.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A. Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol. 2014;5:127. doi: 10.3389/fimmu.2014.00127.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Dey A, Allen J, Hankey-Giblin PA. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Front Immunol. 2014;5:683. doi: 10.3389/fimmu.2014.00683.PubMedGoogle Scholar
  31. 31.
    Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61. doi: 10.1016/j.immuni.2014.06.010.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov. 2016;15:551–67. doi: 10.1038/nrd.2016.39.PubMedCrossRefGoogle Scholar
  33. 33.
    Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101. doi: 10.1038/nature13479.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zaynagetdinov R, et al. Chronic NF-kappaB activation links COPD and lung cancer through generation of an immunosuppressive microenvironment in the lungs. Oncotarget. 2016;7:5470–82. doi: 10.18632/oncotarget.6562.PubMedCrossRefGoogle Scholar
  35. 35.
    Zonari E, et al. A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood. 2013;122:243–52. doi: 10.1182/blood-2012-08-449306.PubMedCrossRefGoogle Scholar
  36. 36.
    Bellora F, et al. TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells. Eur J Immunol. 2014;44:1814–22. doi: 10.1002/eji.201344130.PubMedCrossRefGoogle Scholar
  37. 37.
    Peng J, et al. Inhibition of TGF-beta signaling in combination with TLR7 ligation re-programs a tumoricidal phenotype in tumor-associated macrophages. Cancer Lett. 2013;331:239–49. doi: 10.1016/j.canlet.2013.01.001.PubMedCrossRefGoogle Scholar
  38. 38.
    Bernhard CA, Ried C, Kochanek S, Brocker T. CD169+ macrophages are sufficient for priming of CTLs with specificities left out by cross-priming dendritic cells. Proc Natl Acad Sci U S A. 2015;112:5461–6. doi: 10.1073/pnas.1423356112.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ohnishi K, et al. Prognostic significance of CD169-positive lymph node sinus macrophages in patients with endometrial carcinoma. Cancer Sci. 2016;107:846–52. doi: 10.1111/cas.12929.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Saito Y, et al. Prognostic significance of CD169+ lymph node sinus macrophages in patients with malignant melanoma. Cancer Immunol Res. 2015;3:1356–63. doi: 10.1158/2326-6066.CIR-14-0180.PubMedCrossRefGoogle Scholar
  41. 41.
    Pucci F, et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science. 2016;352:242–6. doi: 10.1126/science.aaf1328.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Palucka K, Coussens LM, O’Shaughnessy J. Dendritic cells, inflammation, and breast cancer. Cancer J. 2013;19:511–6. doi: 10.1097/PPO.0000000000000007.PubMedCrossRefGoogle Scholar
  43. 43.
    Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol. 2015;194:2985–91. doi: 10.4049/jimmunol.1403134.PubMedCrossRefGoogle Scholar
  44. 44.
    Lohela M, et al. Intravital imaging reveals distinct responses of depleting dynamic tumor-associated macrophage and dendritic cell subpopulations. Proc Natl Acad Sci U S A. 2014;111:E5086–95. doi: 10.1073/pnas.1419899111.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Scarlett UK, et al. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med. 2012;209:495–506. doi: 10.1084/jem.20111413.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Prue RL, et al. A phase I clinical trial of CD1c (BDCA-1)+ dendritic cells pulsed with HLA-A*0201 peptides for immunotherapy of metastatic hormone refractory prostate cancer. J Immunother. 2015;38:71–6. doi: 10.1097/CJI.0000000000000063.PubMedCrossRefGoogle Scholar
  47. 47.
    Kranz LM, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396–401. doi: 10.1038/nature18300.PubMedCrossRefGoogle Scholar
  48. 48.
    Cornelissen R, et al. Extended tumor control after dendritic cell vaccination with low-dose cyclophosphamide as adjuvant treatment in patients with malignant pleural mesothelioma. Am J Respir Crit Care Med. 2016;193:1023–31. doi: 10.1164/rccm.201508-1573OC.PubMedCrossRefGoogle Scholar
  49. 49.
    Phuphanich S, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother. 2013;62:125–35. doi: 10.1007/s00262-012-1319-0.PubMedCrossRefGoogle Scholar
  50. 50.
    Geiger TL, Sun JC. Development and maturation of natural killer cells. Curr Opin Immunol. 2016;39:82–9. doi: 10.1016/j.coi.2016.01.007.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wolf MJ, et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell. 2014;26:549–64. doi: 10.1016/j.ccell.2014.09.003.PubMedCrossRefGoogle Scholar
  52. 52.
    Ostapchuk YO, et al. Peripheral blood NK cells expressing HLA-G, IL-10 and TGF-beta in healthy donors and breast cancer patients. Cell Immunol. 2015;298:37–46. doi: 10.1016/j.cellimm.2015.09.002.PubMedCrossRefGoogle Scholar
  53. 53.
    Pasero C, et al. Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget. 2015;6:14360–73. doi: 10.18632/oncotarget.3965.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yin T, et al. Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cell Immunol. 2016;300:41–5. doi: 10.1016/j.cellimm.2015.11.009.PubMedCrossRefGoogle Scholar
  55. 55.
    Masopust D, Schenkel JM. The integration of T cell migration, differentiation and function. Nat Rev Immunol. 2013;13:309–20. doi: 10.1038/nri3442.PubMedCrossRefGoogle Scholar
  56. 56.
    Daniel D, et al. Immune enhancement of skin carcinogenesis by CD4+ T cells. J Exp Med. 2003;197:1017–28. doi: 10.1084/jem.20021047.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ma C, et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature. 2016;531:253–7. doi: 10.1038/nature16969.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Dadi S, et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell. 2016;164:365–77. doi: 10.1016/j.cell.2016.01.002.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ganesan AP, et al. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma. J Immunol. 2013;191:2009–17. doi: 10.4049/jimmunol.1301317.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ino Y, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013;108:914–23. doi: 10.1038/bjc.2013.32.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mlecnik B, et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med. 2016;8:327ra326. doi: 10.1126/scitranslmed.aad6352.CrossRefGoogle Scholar
  62. 62.
    Gunderson AJ, et al. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov. 2016;6:270–85. doi: 10.1158/2159-8290.CD-15-0827.PubMedCrossRefGoogle Scholar
  63. 63.
    Pylayeva-Gupta Y, et al. IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 2016;6:247–55. doi: 10.1158/2159-8290.CD-15-0843.PubMedCrossRefGoogle Scholar
  64. 64.
    Lundgren S, Berntsson J, Nodin B, Micke P, Jirstrom K. Prognostic impact of tumour-associated B cells and plasma cells in epithelial ovarian cancer. J Ovarian Res. 2016;9:21. doi: 10.1186/s13048-016-0232-0.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Iglesia MD, et al. Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin Cancer Res. 2014;20:3818–29. doi: 10.1158/1078-0432.CCR-13-3368.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Schioppa T, et al. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci U S A. 2011;108:10662–7. doi: 10.1073/pnas.1100994108.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kusne Y, et al. Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNFalpha in glioblastoma. Sci Signal. 2014;7:ra75. doi: 10.1126/scisignal.2005196.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gupta M, Babic A, Beck AH, Terry K. TNF-alpha expression, risk factors, and inflammatory exposures in ovarian cancer: evidence for an inflammatory pathway of ovarian carcinogenesis? Hum Pathol. 2016;54:82–91. doi: 10.1016/j.humpath.2016.03.006.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Liao C, et al. Association between Th17-related cytokines and risk of non-small cell lung cancer among patients with or without chronic obstructive pulmonary disease. Cancer. 2015;121(Suppl 17):3122–9. doi: 10.1002/cncr.29369.PubMedCrossRefGoogle Scholar
  70. 70.
    Blogowski W, et al. Selected cytokines in patients with pancreatic cancer: a preliminary report. PLoS One. 2014;9:e97613. doi: 10.1371/journal.pone.0097613.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Roberts NJ, Zhou S, Diaz LA Jr, Holdhoff M. Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget. 2011;2:739–51. doi: 10.18632/oncotarget.344.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Dondossola E, et al. Self-targeting of TNF-releasing cancer cells in preclinical models of primary and metastatic tumors. Proc Natl Acad Sci U S A. 2016;113:2223–8. doi: 10.1073/pnas.1525697113.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nagura M, et al. Invasion of uterine cervical squamous cell carcinoma cells is facilitated by locoregional interaction with cancer-associated fibroblasts via activating transforming growth factor-beta. Gynecol Oncol. 2015;136:104–11. doi: 10.1016/j.ygyno.2014.11.075.PubMedCrossRefGoogle Scholar
  74. 74.
    Principe DR, et al. TGFbeta signaling in the pancreatic tumor microenvironment promotes fibrosis and immune evasion to facilitate tumorigenesis. Cancer Res. 2016;76:2525–39. doi: 10.1158/0008-5472.CAN-15-1293.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Morris JC, et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One. 2014;9:e90353. doi: 10.1371/journal.pone.0090353.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhao Z, Xi H, Xu D, Li C. Transforming growth factor beta receptor signaling restrains growth of pancreatic carcinoma cells. Tumour Biol. 2015;36:7711–6. doi: 10.1007/s13277-015-3466-3.PubMedCrossRefGoogle Scholar
  77. 77.
    Haabeth OA, Lorvik KB, Yagita H, Bogen B, Corthay A. Interleukin-1 is required for cancer eradication mediated by tumor-specific Th1 cells. Oncoimmunology. 2016;5:e1039763. doi: 10.1080/2162402X.2015.1039763.PubMedCrossRefGoogle Scholar
  78. 78.
    Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013;25:469–84. doi: 10.1016/j.smim.2013.10.008.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Rodriguez-Berriguete G, et al. Clinical significance of both tumor and stromal expression of components of the IL-1 and TNF-alpha signaling pathways in prostate cancer. Cytokine. 2013;64:555–63. doi: 10.1016/j.cyto.2013.09.003.PubMedCrossRefGoogle Scholar
  80. 80.
    Wang Y, et al. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol. 2014;7:1106–15. doi: 10.1038/mi.2013.126.PubMedCrossRefGoogle Scholar
  81. 81.
    Palomo J, Dietrich D, Martin P, Palmer G, Gabay C. The interleukin (IL)-1 cytokine family--balance between agonists and antagonists in inflammatory diseases. Cytokine. 2015;76:25–37. doi: 10.1016/j.cyto.2015.06.017.PubMedCrossRefGoogle Scholar
  82. 82.
    Gupta M, et al. Comprehensive serum cytokine analysis identifies IL-1RA and soluble IL-2Ralpha as predictors of event-free survival in T-cell lymphoma. Ann Oncol. 2016;27:165–72. doi: 10.1093/annonc/mdv486.PubMedCrossRefGoogle Scholar
  83. 83.
    Patel SK, et al. Inflammatory biomarkers, comorbidity, and neurocognition in women with newly diagnosed breast cancer. J Natl Cancer Inst. 2015;107. doi: 10.1093/jnci/djv131.
  84. 84.
    Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26:54–74. doi: 10.1016/j.smim.2014.01.001.PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang Y, et al. Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer Res. 2013;73:6359–74. doi: 10.1158/0008-5472.CAN-13-1558-T.PubMedCrossRefGoogle Scholar
  86. 86.
    Nagasaki T, et al. Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer. 2014;110:469–78. doi: 10.1038/bjc.2013.748.PubMedCrossRefGoogle Scholar
  87. 87.
    Geng Y, et al. Phenotypic switch in blood: effects of pro-inflammatory cytokines on breast cancer cell aggregation and adhesion. PLoS One. 2013;8:e54959. doi: 10.1371/journal.pone.0054959.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Yang C, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol. 2015;32:352. doi: 10.1007/s12032-014-0352-6.PubMedGoogle Scholar
  89. 89.
    Nywening TM, et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016;17:651–62. doi: 10.1016/S1470-2045(16)00078-4.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Montrose DC, et al. The role of PGE2 in intestinal inflammation and tumorigenesis. Prostaglandins Other Lipid Mediat. 2015;116–117:26–36. doi: 10.1016/j.prostaglandins.2014.10.002.PubMedCrossRefGoogle Scholar
  91. 91.
    Wang D, Fu L, Sun H, Guo L, DuBois RN. Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology. 2015;149:1884–95. doi: 10.1053/j.gastro.2015.07.064.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Xu L, et al. COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Sci Transl Med. 2014;6:242ra284. doi: 10.1126/scitranslmed.3008455.CrossRefGoogle Scholar
  93. 93.
    Mao Y, et al. Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res. 2014;20:4096–106. doi: 10.1158/1078-0432.CCR-14-0635.PubMedCrossRefGoogle Scholar
  94. 94.
    Zelenay S, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162:1257–70. doi: 10.1016/j.cell.2015.08.015.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Panigrahy D, Greene ER, Pozzi A, Wang DW, Zeldin DC. EET signaling in cancer. Cancer Metastasis Rev. 2011;30:525–40. doi: 10.1007/s10555-011-9315-y.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Larsen BT, et al. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK(ca) channels: implications for soluble epoxide hydrolase inhibition. Am J Physiol Heart Circ Physiol. 2006;290:H491–9. doi: 10.1152/ajpheart.00927.2005.PubMedCrossRefGoogle Scholar
  97. 97.
    Panigrahy D, et al. Epoxyeicosanoids promote organ and tissue regeneration. Proc Natl Acad Sci U S A. 2013;110(33):13528–33. doi: 10.1073/pnas.1311565110.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Sander AL, et al. Cytochrome P450-derived epoxyeicosatrienoic acids accelerate wound epithelialization and neovascularization in the hairless mouse ear wound model. Langenbeck’s Arch Surg. 2011;396:1245–53. doi: 10.1007/s00423-011-0838-z.CrossRefGoogle Scholar
  99. 99.
    Inceoglu B, et al. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures. PLoS One. 2013;8:e80922. doi: 10.1371/journal.pone.0080922.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zhang G, Kodani S, Hammock BD. Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Prog Lipid Res. 2014;53:108–23. doi: 10.1016/j.plipres.2013.11.003.PubMedCrossRefGoogle Scholar
  101. 101.
    Panigrahy D, et al. Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. J Clin Invest. 2012;122:178–91. doi: 10.1172/JCI58128.PubMedCrossRefGoogle Scholar
  102. 102.
    Wang D, Dubois RN. Epoxyeicosatrienoic acids: a double-edged sword in cardiovascular diseases and cancer. J Clin Invest. 2012;122:19–22. doi: 10.1172/JCI61453.
  103. 103.
    Wei X, et al. Elevated 14,15- epoxyeicosatrienoic acid by increasing of cytochrome P450 2C8, 2C9 and 2J2 and decreasing of soluble epoxide hydrolase associated with aggressiveness of human breast cancer. BMC Cancer. 2014;14:841. doi: 10.1186/1471-2407-14-841.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Morisseau C, Hammock BD. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol. 2013;53:37–58. doi: 10.1146/annurev-pharmtox-011112-140244.PubMedCrossRefGoogle Scholar
  105. 105.
    Bell GA, et al. Intake of long-chain omega-3 fatty acids from diet and supplements in relation to mortality. Am J Epidemiol. 2014;179:710–20. doi: 10.1093/aje/kwt326.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther. 2014;141:272–82. doi: 10.1016/j.pharmthera.2013.10.010.PubMedCrossRefGoogle Scholar
  107. 107.
    Panigrahy D, et al. PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci U S A. 2008;105:985–90. doi: 10.1073/pnas.0711281105.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kaipainen A, et al. PPARalpha deficiency in inflammatory cells suppresses tumor growth. PLoS One. 2007;2:e260. doi: 10.1371/journal.pone.0000260.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Song M, et al. Marine omega-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut. 2016. doi: 10.1136/gutjnl-2016-311990.
  110. 110.
    Wang D, DuBois RN. The role of anti-inflammatory drugs in colorectal cancer. Annu Rev Med. 2013;64:131–44. doi: 10.1146/annurev-med-112211-154330.PubMedCrossRefGoogle Scholar
  111. 111.
    Liang P, et al. Effect of dietary omega-3 fatty acids on tumor-associated macrophages and prostate cancer progression. Prostate. 2016;76:1293–302. doi: 10.1002/pros.23218.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    D’Eliseo D, Velotti F. Omega-3 fatty acids and cancer cell cytotoxicity: implications for multi-targeted cancer therapy. J Clin Med. 2016;5:15. doi: 10.3390/jcm5020015.PubMedCentralCrossRefGoogle Scholar
  113. 113.
    Nabavi SF, et al. Omega-3 polyunsaturated fatty acids and cancer: lessons learned from clinical trials. Cancer Metastasis Rev. 2015;34:359–80. doi: 10.1007/s10555-015-9572-2.PubMedCrossRefGoogle Scholar
  114. 114.
    D’Eliseo D, et al. Epithelial-to-mesenchymal transition and invasion are upmodulated by tumor-expressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells. J Exp Clin Cancer Res. 2016;35:24. doi: 10.1186/s13046-016-0302-6.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Pan J, et al. Elevation of omega-3 polyunsaturated fatty acids attenuates PTEN-deficiency induced endometrial cancer development through regulation of COX-2 and PGE2 production. Sci Rep. 2015;5:14958. doi: 10.1038/srep14958.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Zhang C, Yu H, Ni X, Shen S, Das UN. Growth inhibitory effect of polyunsaturated fatty acids (PUFAs) on colon cancer cells via their growth inhibitory metabolites and fatty acid composition changes. PLoS One. 2015;10:e0123256. doi: 10.1371/journal.pone.0123256.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Di Gennaro A, Haeggstrom JZ. The leukotrienes: immune-modulating lipid mediators of disease. Adv Immunol. 2012;116:51–92. doi: 10.1016/B978-0-12-394300-2.00002-8.PubMedCrossRefGoogle Scholar
  118. 118.
    Satpathy SR, et al. Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth. Nat Commun. 2015;6:7064. doi: 10.1038/ncomms8064.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Poczobutt JM, et al. Eicosanoid profiling in an orthotopic model of lung cancer progression by mass spectrometry demonstrates selective production of leukotrienes by inflammatory cells of the microenvironment. PLoS One. 2013;8:e79633. doi: 10.1371/journal.pone.0079633.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Poczobutt JM, et al. Deletion of 5-lipoxygenase in the tumor microenvironment promotes lung cancer progression and metastasis through regulating T cell recruitment. J Immunol. 2016;196:891–901. doi: 10.4049/jimmunol.1501648.PubMedCrossRefGoogle Scholar
  121. 121.
    Gounaris E, et al. Zileuton, 5-lipoxygenase inhibitor, acts as a chemopreventive agent in intestinal polyposis, by modulating polyp and systemic inflammation. PLoS One. 2015;10:e0121402. doi: 10.1371/journal.pone.0121402.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sarveswaran S, Chakraborty D, Chitale D, Sears R, Ghosh J. Inhibition of 5-lipoxygenase selectively triggers disruption of c-Myc signaling in prostate cancer cells. J Biol Chem. 2015;290:4994–5006. doi: 10.1074/jbc.M114.599035.PubMedCrossRefGoogle Scholar
  123. 123.
    Knab LM, et al. Ablation of 5-lipoxygenase mitigates pancreatic lesion development. J Surg Res. 2015;194:481–7. doi: 10.1016/j.jss.2014.10.021.PubMedCrossRefGoogle Scholar
  124. 124.
    Bhardwaj A, et al. Annexin A1 preferentially predicts poor prognosis of basal-like breast cancer patients by activating mTOR-S6 signaling. PLoS One. 2015;10:e0127678. doi: 10.1371/journal.pone.0127678.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Sobral-Leite M, et al. Annexin A1 expression in a pooled breast cancer series: association with tumor subtypes and prognosis. BMC Med. 2015;13:156. doi: 10.1186/s12916-015-0392-6.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Rong B, et al. Elevated serum annexin A1 as potential diagnostic marker for lung cancer: a retrospective case-control study. Am J Transl Res. 2014;6:558–69.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Ananthakrishnan AN, et al. Serum inflammatory markers and risk of colorectal cancer in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2014;12:1342–8. doi: 10.1016/j.cgh.2013.12.030.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Chen IH, et al. Using SCC antigen and CRP levels as prognostic biomarkers in recurrent oral cavity squamous cell carcinoma. PLoS One. 2014;9:e103265. doi: 10.1371/journal.pone.0103265.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ose J, et al. Inflammatory markers and risk of epithelial ovarian cancer by tumor subtypes: the EPIC cohort. Cancer Epidemiol Biomark Prev. 2015;24:951–61. doi: 10.1158/1055-9965.EPI-14-1279-T.CrossRefGoogle Scholar
  130. 130.
    Trabert B, et al. Pre-diagnostic serum levels of inflammation markers and risk of ovarian cancer in the prostate, lung, colorectal and ovarian cancer (PLCO) screening trial. Gynecol Oncol. 2014;135:297–304. doi: 10.1016/j.ygyno.2014.08.025.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Guo L, et al. C-reactive protein and risk of breast cancer: a systematic review and meta-analysis. Sci Rep. 2015;5:10508. doi: 10.1038/srep10508.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Szkandera J, et al. Validation of C-reactive protein levels as a prognostic indicator for survival in a large cohort of pancreatic cancer patients. Br J Cancer. 2014;110:183–8. doi: 10.1038/bjc.2013.701.PubMedCrossRefGoogle Scholar
  133. 133.
    Greene ER, Huang S, Serhan CN, Panigrahy D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat. 2011;96:27–36. doi: 10.1016/j.prostaglandins.2011.08.004.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Charles KA, et al. Systemic inflammation is an independent predictive marker of clinical outcomes in mucosal squamous cell carcinoma of the head and neck in oropharyngeal and non-oropharyngeal patients. BMC Cancer. 2016;16:124. doi: 10.1186/s12885-016-2089-4.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Moreira DM, et al. Baseline prostate inflammation is associated with a reduced risk of prostate cancer in men undergoing repeat prostate biopsy: results from the REDUCE study. Cancer. 2014;120:190–6. doi: 10.1002/cncr.28349.PubMedCrossRefGoogle Scholar
  136. 136.
    Moreira DM, Nickel JC, Andriole GL, Castro-Santamaria R, Freedland SJ. Chronic baseline prostate inflammation is associated with lower tumor volume in men with prostate cancer on repeat biopsy: results from the REDUCE study. Prostate. 2015;75:1492–8. doi: 10.1002/pros.23041.PubMedCrossRefGoogle Scholar
  137. 137.
    Morrison L, et al. Inflammatory biomarker score and cancer: a population-based prospective cohort study. BMC Cancer. 2016;16:80. doi: 10.1186/s12885-016-2115-6.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zheng RR, et al. Cervical cancer systemic inflammation score: a novel predictor of prognosis. Oncotarget. 2016;7:15230–42. doi: 10.18632/oncotarget.7378.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Gu L, et al. Prognostic role of lymphocyte to monocyte ratio for patients with cancer: evidence from a systematic review and meta-analysis. Oncotarget. 2016;7:31926–42. doi: 10.18632/oncotarget.7876.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Hu P, et al. Prognostic significance of systemic inflammation-based lymphocyte- monocyte ratio in patients with lung cancer: based on a large cohort study. PLoS One. 2014;9:e108062. doi: 10.1371/journal.pone.0108062.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kune GA, Kune S, Watson LF. Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne colorectal cancer study. Cancer Res. 1988;48:4399–404.PubMedGoogle Scholar
  142. 142.
    Drew DA, Cao Y, Chan AT. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat Rev Cancer. 2016;16:173–86. doi: 10.1038/nrc.2016.4.PubMedCrossRefGoogle Scholar
  143. 143.
    Baandrup L, Kjaer SK, Olsen JH, Dehlendorff C, Friis S. Low-dose aspirin use and the risk of ovarian cancer in Denmark. Ann Oncol. 2015;26:787–92. doi: 10.1093/annonc/mdu578.PubMedCrossRefGoogle Scholar
  144. 144.
    Trabert B, et al. Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: a pooled analysis in the ovarian cancer association consortium. J Natl Cancer Inst. 2014;106:djt431. doi: 10.1093/jnci/djt431.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Ye X, et al. Frequency-risk and duration-risk relationships between aspirin use and gastric cancer: a systematic review and meta-analysis. PLoS One. 2013;8:e71522. doi: 10.1371/journal.pone.0071522.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Fraser DM, Sullivan FM, Thompson AM, McCowan C. Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study. Br J Cancer. 2014;111:623–7. doi: 10.1038/bjc.2014.264.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Chubak J, et al. Aspirin for the prevention of cancer incidence and mortality: systematic evidence reviews for the U.S. preventive services task force. Ann Intern Med. 2016;164:814–25. doi: 10.7326/M15-2117.PubMedCrossRefGoogle Scholar
  148. 148.
    Friis S, Riis AH, Erichsen R, Baron JA, Sorensen HT. Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk: a population-based, case-control study. Ann Intern Med. 2015;163:347–55. doi: 10.7326/M15-0039.PubMedCrossRefGoogle Scholar
  149. 149.
    Nan H, et al. Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA. 2015;313:1133–42. doi: 10.1001/jama.2015.1815.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Vidal AC, et al. Aspirin, NSAIDs, and risk of prostate cancer: results from the REDUCE study. Clin Cancer Res. 2015;21:756–62. doi: 10.1158/1078-0432.CCR-14-2235.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Megan L. Sulciner
    • 1
    • 2
  • Molly M. Gilligan
    • 1
    • 2
  • Bruce R. Zetter
    • 3
  • Dipak Panigrahy
    • 1
    • 2
  1. 1.Center for Vascular Biology Research, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  2. 2.Department of Pathology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  3. 3.Vascular Biology ProgramBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations