Skip to main content

More Than a Barrier: How the Endothelium Instructs Metastasis

  • Chapter
  • First Online:
Biomarkers of the Tumor Microenvironment

Abstract

For metastasis to occur, a tumor cell must interact with endothelium at many steps and on multiple levels. The first half of this chapter highlights specific ligand–receptor interactions between tumor cells and the endothelium required for successful metastatic dissemination to occur, with an eye on how the specificity of endothelium influences this process in different tissues. The second half of this chapter focuses on interactions between disseminated tumor cells (DTCs) and endothelium post-extravasation. Evidence that a niche comprised by microvasculature is responsible for both maintaining cellular dormancy and facilitating tumor cell outgrowth is presented. By contrasting these studies with the known roles of endothelial-derived signals in development, maintenance of organ homeostasis, wound healing, and in stem cell niches, we describe how endothelium could dictate these opposing cellular responses during metastasis. Elaborating upon the role of endothelium as a regulator of DTC dormancy and outgrowth in multiple tissues—perhaps for multiple cancers—will guide development of therapies to combat and even prevent metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADAM:

A disintegrin and metalloproteinase

Aes:

Amino-terminal enhancer of split

ATP:

Adenosine triphosphate

BBB:

Blood–brain barrier

CXCL12:

Chemokine (C-X-C Motif) ligand 12

CXCR7:

C-X-C chemokine receptor type 7

Dll4:

Delta-like protein 4

DTC:

Disseminated tumor cell

EC:

Endothelial cell

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

Eph:

Ephrin

HB-EGF:

Heparin-binding EGF-like growth factor

HSC:

Hematopoietic stem cell

HSPC:

Hematopoietic stem and progenitor cell

ICAM-1:

Intercellular adhesion molecule 1

IgG:

Immunoglobulin

IL:

Interleukin

L1CAM:

L1 cell adhesion molecule

LGALS3BP:

Galectin-3-binding protein

LSEC:

Liver sinusoidal endothelial cell

MAPK:

Mitogen-activated protein kinase

MENAINV :

Mammalian enabled homologue, invasion

MLCK:

Myosin light chain kinase

NO:

Nitric oxide

NSC:

Neural stem cell

PDGF:

Platelet-derived growth factor

PECAM:

Platelet endothelial cell adhesion molecule

POSTN:

Periostin

PSGL1:

P-selectin glycoprotein ligand 1

PVN:

Perivascular niche

SCF:

Stem cell factor

sLex :

Tetrasaccharide sialyl Lewis x antigen

SVZ:

Subventricular zone

TGF:

Transforming growth factor

TMEM:

Tumor microenvironment of metastasis

TNFα:

Tumor necrosis factor-α

TSP-1:

Thrombospondin-1

VCAM-1:

Vascular cell adhesion molecule 1

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

vWF:

Von Willebrand factor

References

  1. Ewing J. Lymphoepithelioma. Am J Pathol. 1929;5(2):99–108.7.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133(3421):571–3.

    Article  Google Scholar 

  3. Hart IR, Fidler IJ. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 1980;40(7):2281–7.

    CAS  PubMed  Google Scholar 

  4. Schatteman GC, Awad O. Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anat Rec A Discov Mol Cell Evol Biol. 2004;276(1):13–21.

    Article  PubMed  Google Scholar 

  5. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11:73–91.

    Article  CAS  PubMed  Google Scholar 

  6. Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med. 2012;2(1):a006429.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell. 2013;26(2):204–19.

    Article  CAS  PubMed  Google Scholar 

  8. Cunha GR. Stromal induction and specification of morphogenesis and cytodifferentiation of the epithelia of the Mullerian ducts and urogenital sinus during development of the uterus and vagina in mice. J Exp Zool. 1976;196(3):361–70.

    Article  CAS  PubMed  Google Scholar 

  9. Cunha GR, Baskin L. Mesenchymal-epithelial interaction techniques. Differentiation. 2016;91(4–5):20–7.

    Article  CAS  PubMed  Google Scholar 

  10. De Bruyn PP, Cho Y. Vascular endothelial invasion via transcellular passage by malignant cells in the primary stage of metastases formation. J Ultrastruct Res. 1982;81(2):189–201.

    Article  PubMed  Google Scholar 

  11. Khuon S, Liang L, Dettman RW, Sporn PH, Wysolmerski RB, Chew TL. Myosin light chain kinase mediates transcellular intravasation of breast cancer cells through the underlying endothelial cells: a three-dimensional FRET study. J Cell Sci. 2010;123(Pt 3):431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sonoshita M, Aoki M, Fuwa H, Aoki K, Hosogi H, Sakai Y, et al. Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell. 2011;19(1):125–37.

    Article  CAS  PubMed  Google Scholar 

  13. Frohlich C, Klitgaard M, Noer JB, Kotzsch A, Nehammer C, Kronqvist P, et al. ADAM12 is expressed in the tumour vasculature and mediates ectodomain shedding of several membrane-anchored endothelial proteins. Biochem J. 2013;452(1):97–109.

    Article  PubMed  CAS  Google Scholar 

  14. Ohlig S, Farshi P, Pickhinke U, van den Boom J, Hoing S, Jakuschev S, et al. Sonic hedgehog shedding results in functional activation of the solubilized protein. Dev Cell. 2011;20(6):764–74.

    Article  CAS  PubMed  Google Scholar 

  15. Dyczynska E, Sun D, Yi H, Sehara-Fujisawa A, Blobel CP, Zolkiewska A. Proteolytic processing of delta-like 1 by ADAM proteases. J Biol Chem. 2007;282(1):436–44.

    Article  CAS  PubMed  Google Scholar 

  16. Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med. 2002;8(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  17. Robinson BD, Sica GL, Liu YF, Rohan TE, Gertler FB, Condeelis JS, et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res. 2009;15(7):2433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64(19):7022–9.

    Article  CAS  PubMed  Google Scholar 

  19. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007;67(6):2649–56.

    Article  CAS  PubMed  Google Scholar 

  20. Di Modugno F, DeMonte L, Balsamo M, Bronzi G, Nicotra MR, Alessio M, et al. Molecular cloning of hMena (ENAH) and its splice variant hMena+11a: epidermal growth factor increases their expression and stimulates hMena+11a phosphorylation in breast cancer cell lines. Cancer Res. 2007;67(6):2657–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Di Modugno F, Iapicca P, Boudreau A, Mottolese M, Terrenato I, Perracchio L, et al. Splicing program of human MENA produces a previously undescribed isoform associated with invasive, mesenchymal-like breast tumors. Proc Natl Acad Sci U S A. 2012;109(47):19280–5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Di Modugno F, Mottolese M, DeMonte L, Trono P, Balsamo M, Conidi A, et al. The cooperation between hMena overexpression and HER2 signalling in breast cancer. PLoS One. 2010;5(12):e15852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Roussos ET, Balsamo M, Alford SK, Wyckoff JB, Gligorijevic B, Wang Y, et al. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J Cell Sci. 2011;124(Pt 13):2120–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reymond N, d’Agua BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13(12):858–70.

    Article  CAS  PubMed  Google Scholar 

  25. Carman CV, Springer TA. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol. 2004;167(2):377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mamdouh Z, Mikhailov A, Muller WA. Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. J Exp Med. 2009;206(12):2795–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muller WA. Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol. 2011;6:323–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Buul JD, Allingham MJ, Samson T, Meller J, Boulter E, Garcia-Mata R, et al. RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol. 2007;178(7):1279–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Arvanitis C, Khuon S, Spann R, Ridge KM, Chew TL. Structure and biomechanics of the endothelial transcellular circumferential invasion array in tumor invasion. PLoS One. 2014;9(2):e89758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204(10):2349–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kerjaschki D, Bago-Horvath Z, Rudas M, Sexl V, Schneckenleithner C, Wolbank S, et al. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest. 2011;121(5):2000–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ding Z, Liu Z, Bi Y, Tian H, Li G, Song T. Morphological study of the interaction between M21 melanoma and lymphatic endothelium. Lymphology. 2005;38(2):87–91.

    CAS  PubMed  Google Scholar 

  33. Glinskii OV, Huxley VH, Glinsky GV, Pienta KJ, Raz A, Glinsky VV. Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia. 2005;7(5):522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987;48(4):549–54.

    Article  CAS  PubMed  Google Scholar 

  35. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25(4):234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang H, Wong CC, Wei H, Gilkes DM, Korangath P, Chaturvedi P, et al. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene. 2012;31(14):1757–70.

    Article  CAS  PubMed  Google Scholar 

  37. Singh B, Fu C, Bhattacharya J. Vascular expression of the alpha(v)beta(3)-integrin in lung and other organs. Am J Physiol Lung Cell Mol Physiol. 2000;278(1):L217–26.

    Article  CAS  PubMed  Google Scholar 

  38. Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell. 2014;156(5):1002–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7(2):192–8.

    Article  CAS  PubMed  Google Scholar 

  40. Garmy-Susini B, Avraamides CJ, Desgrosellier JS, Schmid MC, Foubert P, Ellies LG, et al. PI3Kalpha activates integrin alpha4beta1 to establish a metastatic niche in lymph nodes. Proc Natl Acad Sci U S A. 2013;110(22):9042–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen MB, Whisler JA, Jeon JS, Kamm RD. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr Biol (Camb). 2013;5(10):1262–71.

    Article  CAS  Google Scholar 

  42. Piali L, Hammel P, Uherek C, Bachmann F, Gisler RH, Dunon D, et al. CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol. 1995;130(2):451–60.

    Article  CAS  PubMed  Google Scholar 

  43. Bauer K, Mierke C, Behrens J. Expression profiling reveals genes associated with transendothelial migration of tumor cells: a functional role for alphavbeta3 integrin. Int J Cancer. 2007;121(9):1910–8.

    Article  CAS  PubMed  Google Scholar 

  44. Lorger M, Felding-Habermann B. Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol. 2010;176(6):2958–71.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Paku S, Dome B, Toth R, Timar J. Organ-specificity of the extravasation process: an ultrastructural study. Clin Exp Metastasis. 2000;18(6):481–92.

    Article  CAS  PubMed  Google Scholar 

  46. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. 2010;16(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  47. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459(7249):1005–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A. 2001;98(6):3352–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood. 2004;104(2):397–401.

    Article  CAS  PubMed  Google Scholar 

  50. Erpenbeck L, Nieswandt B, Schon M, Pozgajova M, Schon MP. Inhibition of platelet GPIb alpha and promotion of melanoma metastasis. J Invest Dermatol. 2010;130(2):576–86.

    Article  CAS  PubMed  Google Scholar 

  51. Erpenbeck L, Rubant S, Hardt K, Santoso S, Boehncke WH, Schon MP, et al. Constitutive and functionally relevant expression of JAM-C on platelets. Thromb Haemost. 2010;103(4):857–9.

    Article  CAS  PubMed  Google Scholar 

  52. Erpenbeck L, Schon MP. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood. 2010;115(17):3427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  54. Honn KV, Tang DG, Chen YQ. Platelets and cancer metastasis: more than an epiphenomenon. Semin Thromb Hemost. 1992;18(4):392–415.

    Article  CAS  PubMed  Google Scholar 

  55. Im JH, Fu W, Wang H, Bhatia SK, Hammer DA, Kowalska MA, et al. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res. 2004;64(23):8613–9.

    Article  CAS  PubMed  Google Scholar 

  56. Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 2006;10(5):355–62.

    Article  CAS  PubMed  Google Scholar 

  57. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood. 2005;105(1):178–85.

    Article  CAS  PubMed  Google Scholar 

  58. Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell. 2013;24(1):130–7.

    Article  CAS  PubMed  Google Scholar 

  59. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science. 2001;294(5542):564–7.

    Article  CAS  PubMed  Google Scholar 

  63. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science. 2001;294(5542):559–63.

    Article  CAS  PubMed  Google Scholar 

  64. DeLeve LD, Wang X, Hu L, McCuskey MK, McCuskey RS. Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am J Physiol Gastrointest Liver Physiol. 2004;287(4):G757–63.

    Google Scholar 

  65. Deleve LD, Wang X, Guo Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology. 2008;48(3):920–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529(7586):316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis – current status and future directions. J Hepatol. 2014;61(4):912–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kobayashi H, Butler JM, O’Donnell R, Kobayashi M, Ding BS, Bonner B, et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol. 2010;12(11):1046–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol. 2014;16(11):1045–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghajar CM. Metastasis prevention by targeting the dormant niche. Nat Rev Cancer. 2015;15(4):238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 2010;10(2):138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol. 2002;1(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res. 1970;31(1):125–50.

    Article  CAS  PubMed  Google Scholar 

  75. Wisse E, Braet F, Luo D, De Zanger R, Jans D, Crabbe E, et al. Structure and function of sinusoidal lining cells in the liver. Toxicol Pathol. 1996;24(1):100–11.

    Article  CAS  PubMed  Google Scholar 

  76. Wisse E. Kupffer cell reactions in rat liver under various conditions as observed in the electron microscope. J Ultrastruct Res. 1974;46(3):499–520.

    Article  CAS  PubMed  Google Scholar 

  77. Wisse E. Observations on the fine structure and peroxidase cytochemistry of normal rat liver Kupffer cells. J Ultrastruct Res. 1974;46(3):393–426.

    Article  CAS  PubMed  Google Scholar 

  78. Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol. 1980;66:303–53.

    Article  CAS  PubMed  Google Scholar 

  79. Wake K. “Sternzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat. 1971;132(4):429–62.

    Article  CAS  PubMed  Google Scholar 

  80. Ito T, Nemoto M. Kupfer’s cells and fat storing cells in the capillary wall of human liver. Okajimas Folia Anat Jpn. 1952;24(4):243–58.

    Article  CAS  PubMed  Google Scholar 

  81. Warren A, Le Couteur DG, Fraser R, Bowen DG, McCaughan GW, Bertolino P. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology. 2006;44(5):1182–90.

    Article  CAS  PubMed  Google Scholar 

  82. Boulter L, WY L, Forbes SJ. Differentiation of progenitors in the liver: a matter of local choice. J Clin Invest. 2013;123(5):1867–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14(3):181–94.

    Article  CAS  PubMed  Google Scholar 

  84. Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A. 1985;82(24):8681–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xie G, Wang X, Wang L, Wang L, Atkinson RD, Kanel GC, et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology. 2012;142(4):918–27.e6.

    Article  PubMed  Google Scholar 

  86. Jarnagin WR, Rockey DC, Koteliansky VE, Wang SS, Bissell DM. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J Cell Biol. 1994;127(6 Pt 2):2037–48.

    Article  CAS  PubMed  Google Scholar 

  87. Rockey DC, Fouassier L, Chung JJ, Carayon A, Vallee P, Rey C, et al. Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology. 1998;27(2):472–80.

    Article  CAS  PubMed  Google Scholar 

  88. Cao Z, Lis R, Ginsberg M, Chavez D, Shido K, Rabbany SY, et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat Med. 2016;22(2):154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015;16(1):51–66.

    Article  CAS  PubMed  Google Scholar 

  90. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6(6):425–36.

    Article  CAS  PubMed  Google Scholar 

  91. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–21.

    Article  CAS  PubMed  Google Scholar 

  92. Kiel MJ, Radice GL, Morrison SJ. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell. 2007;1(2):204–17.

    Article  CAS  PubMed  Google Scholar 

  93. Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R, Kao KS, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530(7589):223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Broudy VC. Stem cell factor and hematopoiesis. Blood. 1997;90(4):1345–64.

    CAS  PubMed  Google Scholar 

  95. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Inra CN, Zhou BO, Acar M, Murphy MM, Richardson J, Zhao Z, et al. A perisinusoidal niche for extramedullary haematopoiesis in the spleen. Nature. 2015;527(7579):466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stoletov K, Strnadel J, Zardouzian E, Momiyama M, Park FD, Kelber JA, et al. Role of connexins in metastatic breast cancer and melanoma brain colonization. J Cell Sci. 2013;126(Pt 4):904–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. 1972;136(2):261–76.

    Google Scholar 

  99. Casey SC, Li Y, Felsher DW. An essential role for the immune system in the mechanism of tumor regression following targeted oncogene inactivation. Immunol Res. 2014;58(2–3):282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  101. Townson JL, Chambers AF. Dormancy of solitary metastatic cells. Cell Cycle. 2006;5(16):1744–50.

    Article  CAS  PubMed  Google Scholar 

  102. O’Shaughnessy J. Extending survival with chemotherapy in metastatic breast cancer. Oncologist. 2005;10(Suppl 3):20–9.

    Article  PubMed  Google Scholar 

  103. Uhr JW, Pantel K. Controversies in clinical cancer dormancy. Proc Natl Acad Sci U S A. 2011;108(30):12396–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A. 1990;87(17):6624–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Franses JW, Baker AB, Chitalia VC, Edelman ER. Stromal endothelial cells directly influence cancer progression. Sci Transl Med. 2011;3(66):66ra5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Catena R, Bhattacharya N, El Rayes T, Wang S, Choi H, Gao D, et al. Bone marrow-derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov. 2013;3(5):578–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kang SY, Halvorsen OJ, Gravdal K, Bhattacharya N, Lee JM, Liu NW, et al. Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. Proc Natl Acad Sci U S A. 2009;106(29):12115–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161(6):1163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell. 2009;136(5):839–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007;445(7129):776–80.

    Article  PubMed  CAS  Google Scholar 

  111. Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development. 2007;134(5):839–44.

    Article  CAS  PubMed  Google Scholar 

  112. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A. 2007;104(9):3219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Siekmann AF, Lawson ND. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature. 2007;445(7129):781–4.

    Article  CAS  PubMed  Google Scholar 

  114. Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A, et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A. 2007;104(9):3225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 2010;12(10):943–53.

    Article  CAS  PubMed  Google Scholar 

  116. Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6(7):506–20.

    Article  CAS  PubMed  Google Scholar 

  117. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457(7225):102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.

    Article  CAS  Google Scholar 

  119. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med. 2011;17(7):867–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Soikkeli J, Podlasz P, Yin M, Nummela P, Jahkola T, Virolainen S, et al. Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth. Am J Pathol. 2010;177(1):387–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rice GE, Bevilacqua MP. An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science. 1989;246(4935):1303–6.

    Article  CAS  PubMed  Google Scholar 

  122. Weibel ER, Palade GE. New cytoplasmic components in arterial endothelia. J Cell Biol. 1964;23:101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wagner DD, Olmsted JB, Marder VJ. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol. 1982;95(1):355–60.

    Article  CAS  PubMed  Google Scholar 

  124. Bonfanti R, Furie BC, Furie B, Wagner DD. PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood. 1989;73(5):1109–12.

    CAS  PubMed  Google Scholar 

  125. McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bainton DF. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest. 1989;84(1):92–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7(10):803–15.

    Article  CAS  PubMed  Google Scholar 

  127. Garofalo A, Chirivi RG, Foglieni C, Pigott R, Mortarini R, Martin-Padura I, et al. Involvement of the very late antigen 4 integrin on melanoma in interleukin 1-augmented experimental metastases. Cancer Res. 1995;55(2):414–9.

    CAS  PubMed  Google Scholar 

  128. Okahara H, Yagita H, Miyake K, Okumura K. Involvement of very late activation antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) in tumor necrosis factor alpha enhancement of experimental metastasis. Cancer Res. 1994;54(12):3233–6.

    CAS  PubMed  Google Scholar 

  129. Mendoza L, Olaso E, Anasagasti MJ, Fuentes AM, Vidal-Vanaclocha F. Mannose receptor-mediated endothelial cell activation contributes to B16 melanoma cell adhesion and metastasis in liver. J Cell Physiol. 1998;174(3):322–30.

    Article  CAS  PubMed  Google Scholar 

  130. Vidal-Vanaclocha F, Alvarez A, Asumendi A, Urcelay B, Tonino P, Dinarello CA. Interleukin 1 (IL-1)-dependent melanoma hepatic metastasis in vivo; increased endothelial adherence by IL-1-induced mannose receptors and growth factor production in vitro. J Natl Cancer Inst. 1996;88(3–4):198–205.

    Google Scholar 

  131. Vidal-Vanaclocha F, Amezaga C, Asumendi A, Kaplanski G, Dinarello CA. Interleukin-1 receptor blockade reduces the number and size of murine B16 melanoma hepatic metastases. Cancer Res. 1994;54(10):2667–72.

    CAS  PubMed  Google Scholar 

  132. Franses JW, Drosu NC, Gibson WJ, Chitalia VC, Edelman ER. Dysfunctional endothelial cells directly stimulate cancer inflammation and metastasis. Int J Cancer. 2013;133(6):1334–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS, et al. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 2010;70(14):5706–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Warren A, Bertolino P, Cogger VC, McLean AJ, Fraser R, Le Couteur DG. Hepatic pseudocapillarization in aged mice. Exp Gerontol. 2005;40(10):807–12.

    Article  PubMed  Google Scholar 

  135. McLean AJ, Cogger VC, Chong GC, Warren A, Markus AM, Dahlstrom JE, et al. Age-related pseudocapillarization of the human liver. J Pathol. 2003;200(1):112–7.

    Article  PubMed  Google Scholar 

  136. Pablos JL, Santiago B, Galindo M, Torres C, Brehmer MT, Blanco FJ, et al. Synoviocyte-derived CXCL12 is displayed on endothelium and induces angiogenesis in rheumatoid arthritis. J Immunol. 2003;170(4):2147–52.

    Article  CAS  PubMed  Google Scholar 

  137. Lebrin F, Deckers M, Bertolino P, Ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res. 2005;65(3):599–608.

    Article  CAS  PubMed  Google Scholar 

  138. Eppihimer MJ, Gunn J, Freeman GJ, Greenfield EA, Chernova T, Erickson J, et al. Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation. 2002;9(2):133–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Khatib AM, Auguste P, Fallavollita L, Wang N, Samani A, Kontogiannea M, et al. Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol. 2005;167(3):749–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Khatib AM, Kontogiannea M, Fallavollita L, Jamison B, Meterissian S, Brodt P. Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res. 1999;59(6):1356–61.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus Michael Ghajar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grzelak, C.A., Lim, A.R., Ghajar, C.M. (2017). More Than a Barrier: How the Endothelium Instructs Metastasis. In: Akslen, L., Watnick, R. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-319-39147-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39147-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39145-8

  • Online ISBN: 978-3-319-39147-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics