Advertisement

MR-Derived Biomarkers for Cancer Characterization

  • Eugene Kim
  • Morteza Esmaeili
  • Siver A. Moestue
  • Tone F. Bathen
Chapter

Abstract

Magnetic resonance (MR) can be exploited in a variety of ways to obtain a wide range of anatomical and physiological information in a safe and noninvasive manner. This makes MR imaging (MRI) and spectroscopy (MRS) valuable tools in cancer research and clinical oncology, among other fields. This chapter provides a basic introduction to MR physics and describes how different in vivo MR techniques are used to noninvasively characterize tumors and the tumor microenvironment. Two of the most commonly utilized techniques are contrast-enhanced MRI and diffusion-weighted MRI. Contrast-enhanced MRI methods are used to evaluate tumor vascularization and vascular function by measuring the kinetics and distribution of intravenously administered contrast agents. Diffusion-weighted MRI is sensitive to the diffusion of water molecules in the tissue, from which inferences about tumor cellularity and tissue microstructure can be made. Blood-oxygen-level-dependent MRI can distinguish between oxygenated and deoxygenated blood as a proxy to tumor oxygenation. In addition, efforts have been made to develop targeted contrast agents to directly image hypoxia. MRS can be used to measure the levels of various metabolites such as lactate and choline that are involved in metabolic reprogramming in cancer. Both endogenous and exogenous pH-sensitive indicators enable spectroscopic measurement of tumor pH. While this chapter does not provide an exhaustive overview of the MR methods used for cancer characterization, it discusses both clinical and experimental techniques that highlight the versatility of MR as a tool for exploring some key aspects of the tumor microenvironment.

Keywords

Magnetic resonance imaging Magnetic resonance spectroscopy Dynamic contrast enhanced Susceptibility contrast Vessel size imaging Diffusion-weighted imaging Restriction spectrum imaging Diffusion tensor imaging Intravoxel incoherent motion 1H MRS 31P MRS Hyperpolarized 13C MRS Blood oxygen level dependent Perfusion Vasculature Cellularity Extracellular matrix Metabolism Warburg effect Hypoxia pH 

References

  1. 1.
    Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039–49. doi: 10.1056/NEJMra0706596.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437(7058):497–504. doi: 10.1038/nature03987.PubMedCrossRefGoogle Scholar
  3. 3.
    Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Buckley DL, Drew PJ, Mussurakis S, Monson JR, Horsman A. Microvessel density of invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J Magn Reson Imaging. 1997;7(3):461–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Gaustad JV, Brurberg KG, Simonsen TG, Mollatt CS, Rofstad EK. Tumor vascularity assessed by magnetic resonance imaging and intravital microscopy imaging. Neoplasia. 2008;10(4):354–62.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Atkin G, Taylor NJ, Daley FM, Stirling JJ, Richman P, Glynne-Jones R, et al. Dynamic contrast-enhanced magnetic resonance imaging is a poor measure of rectal cancer angiogenesis. Br J Surg. 2006;93(8):992–1000. doi: 10.1002/bjs.5352.PubMedCrossRefGoogle Scholar
  7. 7.
    MY S, Cheung YC, Fruehauf JP, Yu H, Nalcioglu O, Mechetner E, et al. Correlation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer. J Magn Reson Imaging. 2003;18(4):467–77. doi: 10.1002/jmri.10380.CrossRefGoogle Scholar
  8. 8.
    Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991;324(1):1–8. doi: 10.1056/NEJM199101033240101.PubMedCrossRefGoogle Scholar
  9. 9.
    Pickles MD, Manton DJ, Lowry M, Turnbull LW. Prognostic value of pre-treatment DCE-MRI parameters in predicting disease free and overall survival for breast cancer patients undergoing neoadjuvant chemotherapy. Eur J Radiol. 2009;71(3):498–505. doi: 10.1016/j.ejrad.2008.05.007.PubMedCrossRefGoogle Scholar
  10. 10.
    Tuncbilek N, Tokatli F, Altaner S, Sezer A, Ture M, Omurlu IK, et al. Prognostic value DCE-MRI parameters in predicting factor disease free survival and overall survival for breast cancer patients. Eur J Radiol. 2012;81(5):863–7. doi: 10.1016/j.ejrad.2011.02.021.PubMedCrossRefGoogle Scholar
  11. 11.
    Kuhl CK, Mielcareck P, Klaschik S, Leutner C, Wardelmann E, Gieseke J, et al. Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology. 1999;211(1):101–10. doi: 10.1148/radiology.211.1.r99ap38101.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen W, Giger ML, Bick U, Newstead GM. Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI. Med Phys. 2006;33(8):2878–87.PubMedCrossRefGoogle Scholar
  13. 13.
    El Khouli RH, Macura KJ, Jacobs MA, Khalil TH, Kamel IR, Dwyer A, et al. Dynamic contrast-enhanced MRI of the breast: quantitative method for kinetic curve type assessment. AJR Am J Roentgenol. 2009;193(4):W295–300. doi: 10.2214/AJR.09.2483.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer. 2005;92(9):1599–610. doi: 10.1038/sj.bjc.6602550.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    O'Connor JP, Jackson A, Parker GJ, Roberts C, Jayson GC. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol. 2012;9(3):167–77. doi: 10.1038/nrclinonc.2012.2.PubMedCrossRefGoogle Scholar
  16. 16.
    Nielsen T, Wittenborn T, Horsman MR. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in preclinical studies of antivascular treatments. Pharmaceutics. 2012;4(4):563–89. doi: 10.3390/pharmaceutics4040563.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sourbron SP, Buckley DL. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol. 2012;57(2):R1–33. doi: 10.1088/0031-9155/57/2/R1.PubMedCrossRefGoogle Scholar
  18. 18.
    Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology. 1999;211(3):791–8. doi: 10.1148/radiology.211.3.r99jn46791.PubMedCrossRefGoogle Scholar
  19. 19.
    Shiroishi MS, Castellazzi G, Boxerman JL, D'Amore F, Essig M, Nguyen TB, et al. Principles of T2 *-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. J Magn Reson Imaging. 2015;41(2):296–313. doi: 10.1002/jmri.24648.PubMedCrossRefGoogle Scholar
  20. 20.
    Hakyemez B, Erdogan C, Ercan I, Ergin N, Uysal S, Atahan S. High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. Clin Radiol. 2005;60(4):493–502. doi: 10.1016/j.crad.2004.09.009.PubMedCrossRefGoogle Scholar
  21. 21.
    Schmainda KM, Prah M, Connelly J, Rand SD, Hoffman RG, Mueller W, et al. Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro-Oncology. 2014;16(6):880–8. doi: 10.1093/neuonc/not216.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Huang RY, Neagu MR, Reardon DA, Wen PY. Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy - detecting illusive disease, defining response. Front Neurol. 2015;6:33. doi: 10.3389/fneur.2015.00033.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hygino da Cruz LC Jr, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 2011;32(11):1978–85. doi: 10.3174/ajnr.A2397.PubMedCrossRefGoogle Scholar
  24. 24.
    Jensen JH, Chandra R. MR imaging of microvasculature. Magn Reson Med. 2000;44(2):224–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Tropres I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, et al. Vessel size imaging. Magn Reson Med. 2001;45(3):397–408.PubMedCrossRefGoogle Scholar
  26. 26.
    Tropres I, Lamalle L, Peoc’h M, Farion R, Usson Y, Decorps M, et al. In vivo assessment of tumoral angiogenesis. Magn Reson Med. 2004;51(3):533–41. doi: 10.1002/mrm.20017.PubMedCrossRefGoogle Scholar
  27. 27.
    Kim E, Cebulla J, Ward BD, Rhie K, Zhang J, Pathak AP. Assessing breast cancer angiogenesis in vivo: which susceptibility contrast MRI biomarkers are relevant? Magn Reson Med. 2013;70(4):1106–16. doi: 10.1002/mrm.24530.PubMedCrossRefGoogle Scholar
  28. 28.
    Ungersma SE, Pacheco G, Ho C, Yee SF, Ross J, van Bruggen N, et al. Vessel imaging with viable tumor analysis for quantification of tumor angiogenesis. Magn Reson Med. 2010;63(6):1637–47. doi: 10.1002/mrm.22442.PubMedCrossRefGoogle Scholar
  29. 29.
    Emblem KE, Farrar CT, Gerstner ER, Batchelor TT, Borra RJ, Rosen BR, et al. Vessel caliber--a potential MRI biomarker of tumour response in clinical trials. Nat Rev Clin Oncol. 2014;11(10):566–84. doi: 10.1038/nrclinonc.2014.126.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hompland T, Ellingsen C, Galappathi K, Rofstad EK. DW-MRI in assessment of the hypoxic fraction, interstitial fluid pressure, and metastatic propensity of melanoma xenografts. BMC Cancer. 2014;14:92. doi: 10.1186/1471-2407-14-92.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Karavaeva E, Harris RJ, Leu K, Shabihkhani M, Yong WH, Pope WB, et al. Relationship between [18F]FDOPA PET uptake, apparent diffusion coefficient (ADC), and proliferation rate in recurrent malignant gliomas. Mol Imaging Biol. 2015;17(3):434–42. doi: 10.1007/s11307-014-0807-3.PubMedCrossRefGoogle Scholar
  32. 32.
    Chen YW, Pan HB, Tseng HH, Chu HC, Hung YT, Yen YC, et al. Differentiated epithelial- and mesenchymal-like phenotypes in subcutaneous mouse xenografts using diffusion weighted-magnetic resonance imaging. Int J Mol Sci. 2013;14(11):21943–59. doi: 10.3390/ijms141121943.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kang Y, Choi SH, Kim YJ, Kim KG, Sohn CH, Kim JH, et al. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging--correlation with tumor grade. Radiology. 2011;261(3):882–90. doi: 10.1148/radiol.11110686.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee S, Choi SH, Ryoo I, Yoon TJ, Kim TM, Lee SH, et al. Evaluation of the microenvironmental heterogeneity in high-grade gliomas with IDH1/2 gene mutation using histogram analysis of diffusion-weighted imaging and dynamic-susceptibility contrast perfusion imaging. J Neuro-Oncol. 2015;121(1):141–50. doi: 10.1007/s11060-014-1614-z.CrossRefGoogle Scholar
  35. 35.
    White NS, McDonald C, Farid N, Kuperman J, Karow D, Schenker-Ahmed NM, et al. Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res. 2014;74(17):4638–52. doi: 10.1158/0008-5472.CAN-13-3534.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    White NS, McDonald CR, Farid N, Kuperman JM, Kesari S, Dale AM. Improved conspicuity and delineation of high-grade primary and metastatic brain tumors using “restriction spectrum imaging”: quantitative comparison with high B-value DWI and ADC. AJNR Am J Neuroradiol. 2013;34(5):958–964., S1. doi: 10.3174/ajnr.A3327.PubMedCrossRefGoogle Scholar
  37. 37.
    Kothari PD, White NS, Farid N, Chung R, Kuperman JM, Girard HM, et al. Longitudinal restriction spectrum imaging is resistant to pseudoresponse in patients with high-grade gliomas treated with bevacizumab. AJNR Am J Neuroradiol. 2013;34(9):1752–7. doi: 10.3174/ajnr.A3506.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    McDonald CR, White NS, Farid N, Lai G, Kuperman JM, Bartsch H, et al. Recovery of white matter tracts in regions of peritumoral FLAIR hyperintensity with use of restriction spectrum imaging. AJNR Am J Neuroradiol. 2013;34(6):1157–63. doi: 10.3174/ajnr.A3372.PubMedCrossRefGoogle Scholar
  39. 39.
    Liss MA, White NS, Parsons JK, Schenker-Ahmed NM, Rakow-Penner R, Kuperman JM, et al. MRI-derived restriction spectrum imaging cellularity index is associated with high grade prostate cancer on radical prostatectomy specimens. Front Oncol. 2015;5:30. doi: 10.3389/fonc.2015.00030.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Rakow-Penner RA, White NS, Parsons JK, Choi HW, Liss MA, Kuperman JM, et al. Novel technique for characterizing prostate cancer utilizing MRI restriction spectrum imaging: proof of principle and initial clinical experience with extraprostatic extension. Prostate Cancer Prostatic Dis. 2015;18(1):81–5. doi: 10.1038/pcan.2014.50.PubMedCrossRefGoogle Scholar
  41. 41.
    Hamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol. 2007;25(26):4104–9. doi: 10.1200/JCO.2007.11.9610.PubMedCrossRefGoogle Scholar
  42. 42.
    Papaevangelou E, Almeida GS, Jamin Y, Robinson SP, de Souza NM. Diffusion-weighted MRI for imaging cell death after cytotoxic or apoptosis-inducing therapy. Br J Cancer. 2015;112(9):1471–9. doi: 10.1038/bjc.2015.134.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Cebulla J, Huuse EM, Pettersen K, van der Veen A, Kim E, Andersen S, et al. MRI reveals the in vivo cellular and vascular response to BEZ235 in ovarian cancer xenografts with different PI3-kinase pathway activity. Br J Cancer. 2015;112(3):504–13. doi: 10.1038/bjc.2014.628.PubMedCrossRefGoogle Scholar
  44. 44.
    Moestue SA, Huuse EM, Lindholm EM, Bofin A, Engebraaten O, Maelandsmo GM, et al. Low-molecular contrast agent dynamic contrast-enhanced (DCE)-MRI and diffusion-weighted (DW)-MRI in early assessment of bevacizumab treatment in breast cancer xenografts. J Magn Reson Imaging. 2013;38(5):1043–53. doi: 10.1002/jmri.24079.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu L, Wu N, Ouyang H, Dai JR, Wang WH. Diffusion-weighted MRI in early assessment of tumour response to radiotherapy in high-risk prostate cancer. Br J Radiol. 2014;87(1043):20140359. doi: 10.1259/bjr.20140359.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bonekamp S, Corona-Villalobos CP, Kamel IR. Oncologic applications of diffusion-weighted MRI in the body. J Magn Reson Imaging. 2012;35(2):257–79. doi: 10.1002/jmri.22786.PubMedCrossRefGoogle Scholar
  47. 47.
    Ko ES, Han BK, Kim RB, Cho EY, Ahn S, Nam SJ, et al. Apparent diffusion coefficient in estrogen receptor-positive invasive ductal breast carcinoma: correlations with tumor-stroma ratio. Radiology. 2014;271(1):30–7. doi: 10.1148/radiol.13131073.PubMedCrossRefGoogle Scholar
  48. 48.
    Huuse EM, Moestue SA, Lindholm EM, Bathen TF, Nalwoga H, Kruger K, et al. In vivo MRI and histopathological assessment of tumor microenvironment in luminal-like and basal-like breast cancer xenografts. J Magn Reson Imaging. 2012;35(5):1098–107. doi: 10.1002/jmri.23507.PubMedCrossRefGoogle Scholar
  49. 49.
    Bergamaschi A, Hjortland GO, Triulzi T, Sorlie T, Johnsen H, Ree AH, et al. Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models. Mol Oncol. 2009;3(5–6):469–82. doi: 10.1016/j.molonc.2009.07.003.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bergamaschi A, Tagliabue E, Sorlie T, Naume B, Triulzi T, Orlandi R, et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol. 2008;214(3):357–67. doi: 10.1002/path.2278.PubMedCrossRefGoogle Scholar
  51. 51.
    Kobus T, van der Laak JA, Maas MC, Hambrock T, Bruggink CC, Hulsbergen-van de Kaa CA, et al. Contribution of histopathologic tissue composition to quantitative MR spectroscopy and diffusion-weighted imaging of the prostate. Radiology. 2015; doi: 10.1148/radiol.2015142889.
  52. 52.
    Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259–67. doi: 10.1016/S0006-3495(94)80775-1.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nissan N, Furman-Haran E, Feinberg-Shapiro M, Grobgeld D, Eyal E, Zehavi T, et al. Tracking the mammary architectural features and detecting breast cancer with magnetic resonance diffusion tensor imaging. J Vis Exp. 2014; doi: 10.3791/52048.
  54. 54.
    Kakkad SM, Zhang J, Akhbardeh A, Jacob D, Solaiyappan M, Jacobs MA et al., editors. In vivo and ex vivo diffusion tensor imaging parameters follow Collagen 1 fiber distribution in breast cancer xenograft model. Proc Intl Soc Magn Reson Med; 2015; Toronto, Ontario, Canada.Google Scholar
  55. 55.
    Le Bihan D. Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med. 1988;7(3):346–51.PubMedCrossRefGoogle Scholar
  56. 56.
    Mannelli L, Nougaret S, Vargas HA, Do RK. Advances in diffusion-weighted imaging. Radiol Clin N Am. 2015;53(3):569–81. doi: 10.1016/j.rcl.2015.01.002.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gaeta M, Benedetto C, Minutoli F, D’Angelo T, Amato E, Mazziotti S, et al. Use of diffusion-weighted, intravoxel incoherent motion, and dynamic contrast-enhanced MR imaging in the assessment of response to radiotherapy of lytic bone metastases from breast cancer. Acad Radiol. 2014;21(10):1286–93. doi: 10.1016/j.acra.2014.05.021.PubMedCrossRefGoogle Scholar
  58. 58.
    Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Doblas S, Almeida GS, Ble FX, Garteiser P, Hoff BA, McIntyre DJ, et al. Apparent diffusion coefficient is highly reproducible on preclinical imaging systems: evidence from a seven-center multivendor study. J Magn Reson Imaging. 2015; doi: 10.1002/jmri.24955.
  60. 60.
    Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci. 1999;24(2):68–72.PubMedCrossRefGoogle Scholar
  61. 61.
    Phan LM, Yeung SC, Lee MH. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med. 2014;11(1):1–19. doi: 10.7497/j.issn.2095-3941.2014.01.001.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013.PubMedCrossRefGoogle Scholar
  63. 63.
    Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4(7):551–61. doi: 10.1038/nrc1390.PubMedCrossRefGoogle Scholar
  64. 64.
    Bathen TF, Sitter B, Sjobakk TE, Tessem MB, Gribbestad IS. Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res. 2010;70(17):6692–6. doi: 10.1158/0008-5472.CAN-10-0437.PubMedCrossRefGoogle Scholar
  65. 65.
    Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–70.PubMedGoogle Scholar
  66. 66.
    Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A. 2010;107(5):2037–42. doi: 10.1073/pnas.0914433107.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11(12):835–48. doi: 10.1038/nrc3162.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A. 2003;100(18):10158–63. doi: 10.1073/pnas.1733835100.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Day SE, Kettunen MI, Gallagher FA, DE H, Lerche M, Wolber J, et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med. 2007;13(11):1382–7. doi: 10.1038/nm1650.PubMedCrossRefGoogle Scholar
  70. 70.
    Ward CS, Venkatesh HS, Chaumeil MM, Brandes AH, Vancriekinge M, Dafni H, et al. Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Cancer Res. 2010;70(4):1296–305. doi: 10.1158/0008-5472.CAN-09-2251.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gallagher FA, Kettunen MI, Hu DE, Jensen PR, Zandt RI, Karlsson M, et al. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci U S A. 2009;106(47):19801–6. doi: 10.1073/pnas.0911447106.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bohndiek SE, Kettunen MI, DE H, Witney TH, Kennedy BW, Gallagher FA, et al. Detection of tumor response to a vascular disrupting agent by hyperpolarized 13C magnetic resonance spectroscopy. Mol Cancer Ther. 2010;9(12):3278–88. doi: 10.1158/1535-7163.MCT-10-0706.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Plathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med. 2008;49(Suppl 2):43S–63S. doi: 10.2967/jnumed.107.04593049/Suppl_2/43S.PubMedCrossRefGoogle Scholar
  74. 74.
    Testa C, Schiavina R, Lodi R, Salizzoni E, Corti B, Farsad M, et al. Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology. 2007;244(3):797–806. doi: 10.1148/radiol.2443061063.PubMedCrossRefGoogle Scholar
  75. 75.
    Tozaki M, Hoshi K. 1H MR spectroscopy of invasive ductal carcinoma: correlations with FDG PET and histologic prognostic factors. AJR Am J Roentgenol. 2010;194(5):1384–90. doi: 10.2214/AJR.09.3431.PubMedCrossRefGoogle Scholar
  76. 76.
    Gutte H, Hansen AE, Henriksen ST, Johannesen HH, Ardenkjaer-Larsen J, Vignaud A, et al. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner. Am J Nucl Med Mol Imaging. 2015;5(1):38–45.PubMedGoogle Scholar
  77. 77.
    Gutte H, Hansen AE, Larsen M, Rahbek S, Henriksen S, Johannesen H, et al. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET (hyperPET) in 10 canine cancer patients. J Nucl Med. 2015; doi: 10.2967/jnumed.115.156364.
  78. 78.
    Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg. 1972;175(3):409–16.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62. doi: 10.1126/science.1104819.PubMedCrossRefGoogle Scholar
  80. 80.
    Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29(5):625–34. doi: 10.1038/onc.2009.441.PubMedCrossRefGoogle Scholar
  81. 81.
    Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9(4):539–49.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ragnum HB, Vlatkovic L, Lie AK, Axcrona K, Julin CH, Frikstad KM, et al. The tumour hypoxia marker pimonidazole reflects a transcriptional programme associated with aggressive prostate cancer. Br J Cancer. 2015;112(2):382–90. doi: 10.1038/bjc.2014.604.PubMedCrossRefGoogle Scholar
  83. 83.
    Rofstad EK, Galappathi K, Mathiesen B, Ruud EB. Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res. 2007;13(7):1971–8. doi: 10.1158/1078-0432.CCR-06-1967.PubMedCrossRefGoogle Scholar
  84. 84.
    Semenza GL. The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim Biophys Acta. 2015; doi: 10.1016/j.bbamcr.2015.05.036.
  85. 85.
    Ellingsen C, Hompland T, Galappathi K, Mathiesen B, Rofstad EK. DCE-MRI of the hypoxic fraction, radioresponsiveness, and metastatic propensity of cervical carcinoma xenografts. Radiother Oncol. 2014;110(2):335–41. doi: 10.1016/j.radonc.2013.10.018.PubMedCrossRefGoogle Scholar
  86. 86.
    Ovrebo KM, Hompland T, Mathiesen B, Rofstad EK. Assessment of hypoxia and radiation response in intramuscular experimental tumors by dynamic contrast-enhanced magnetic resonance imaging. Radiother Oncol. 2012;102(3):429–35. doi: 10.1016/j.radonc.2011.11.013.PubMedCrossRefGoogle Scholar
  87. 87.
    Stubbs M, Robinson SP, Rodrigues LM, Parkins CS, Collingridge DR, Griffiths JR. The effects of host carbogen (95% oxygen/5% carbon dioxide) breathing on metabolic characteristics of Morris hepatoma 9618a. Br J Cancer. 1998;78(11):1449–56.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Baudelet C, Gallez B. How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med. 2002;48(6):980–6. doi: 10.1002/mrm.10318.PubMedCrossRefGoogle Scholar
  89. 89.
    McPhail LD, Robinson SP. Intrinsic susceptibility MR imaging of chemically induced rat mammary tumors: relationship to histologic assessment of hypoxia and fibrosis. Radiology. 2010;254(1):110–8. doi: 10.1148/radiol.2541090395.PubMedCrossRefGoogle Scholar
  90. 90.
    Burrell JS, Walker-Samuel S, Baker LC, Boult JK, Jamin Y, Halliday J, et al. Exploring DeltaR(2) * and DeltaR(1) as imaging biomarkers of tumor oxygenation. J Magn Reson Imaging. 2013;38(2):429–34. doi: 10.1002/jmri.23987.PubMedCrossRefGoogle Scholar
  91. 91.
    Gross MW, Karbach U, Groebe K, Franko AJ, Mueller-Klieser W. Calibration of misonidazole labeling by simultaneous measurement of oxygen tension and labeling density in multicellular spheroids. Int J Cancer. 1995;61(4):567–73.PubMedCrossRefGoogle Scholar
  92. 92.
    Raleigh JA, Chou SC, Bono EL, Thrall DE, Varia MA. Semiquantitative immunohistochemical analysis for hypoxia in human tumors. Int J Radiat Oncol Biol Phys. 2001;49(2):569–74.PubMedCrossRefGoogle Scholar
  93. 93.
    Lee CP, Payne GS, Oregioni A, Ruddle R, Tan S, Raynaud FI, et al. A phase I study of the nitroimidazole hypoxia marker SR4554 using 19F magnetic resonance spectroscopy. Br J Cancer. 2009;101(11):1860–8. doi: 10.1038/sj.bjc.6605425.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Gulaka PK, Rojas-Quijano F, Kovacs Z, Mason RP, Sherry AD, Kodibagkar VD. GdDO3NI, a nitroimidazole-based T1 MRI contrast agent for imaging tumor hypoxia in vivo. J Biol Inorg Chem. 2014;19(2):271–9. doi: 10.1007/s00775-013-1058-5.PubMedCrossRefGoogle Scholar
  95. 95.
    Okamoto S, Shiga T, Yasuda K, Ito YM, Magota K, Kasai K, et al. High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med. 2013;54(2):201–7. doi: 10.2967/jnumed.112.109330.PubMedCrossRefGoogle Scholar
  96. 96.
    Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys. 1996;36(2):417–28.PubMedCrossRefGoogle Scholar
  97. 97.
    Kikuchi M, Yamane T, Shinohara S, Fujiwara K, Hori SY, Tona Y, et al. 18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma. Ann Nucl Med. 2011;25(9):625–33. doi: 10.1007/s12149-011-0508-9.PubMedCrossRefGoogle Scholar
  98. 98.
    Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol. 2006;24(13):2098–104. doi: 10.1200/JCO.2005.05.2878.PubMedCrossRefGoogle Scholar
  99. 99.
    Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013;73(5):1524–35. doi: 10.1158/0008-5472.CAN-12-2796.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Stubbs M, McSheehy PM, Griffiths JR, Bashford CL. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today. 2000;6(1):15–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Fukumura D, Jain RK. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem. 2007;101(4):937–49. doi: 10.1002/jcb.21187.PubMedCrossRefGoogle Scholar
  102. 102.
    Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49(Suppl 2):24S–42S. doi: 10.2967/jnumed.107.047258.PubMedCrossRefGoogle Scholar
  103. 103.
    Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693–710. doi: 10.1016/j.biotechadv.2013.11.009.PubMedCrossRefGoogle Scholar
  104. 104.
    Wang L, Zhu X, Xie C, Ding N, Weng X, Lu W, et al. Imaging acidosis in tumors using a pH-activated near-infrared fluorescence probe. Chem Commun (Camb). 2012;48(95):11677–9. doi: 10.1039/c2cc36488c.CrossRefGoogle Scholar
  105. 105.
    Hashim AI, Zhang X, Wojtkowiak JW, Martinez GV, Gillies RJ. Imaging pH and metastasis. NMR Biomed. 2011;24(6):582–91. doi: 10.1002/nbm.1644.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Gillies RJ, Raghunand N, Garcia-Martin ML, Gatenby RA. pH imaging. A review of pH measurement methods and applications in cancers. IEEE Eng Med Biol Mag. 2004;23(5):57–64.PubMedCrossRefGoogle Scholar
  107. 107.
    Soto GE, Zhu Z, Evelhoch JL, Ackerman JJ. Tumor 31P NMR pH measurements in vivo: a comparison of inorganic phosphate and intracellular 2-deoxyglucose-6-phosphate as pHnmr indicators in murine radiation-induced fibrosarcoma-1. Magn Reson Med. 1996;36(5):698–704.PubMedCrossRefGoogle Scholar
  108. 108.
    Garcia-Martin ML, Herigault G, Remy C, Farion R, Ballesteros P, Coles JA, et al. Mapping extracellular pH in rat brain gliomas in vivo by 1H magnetic resonance spectroscopic imaging: comparison with maps of metabolites. Cancer Res. 2001;61(17):6524–31.PubMedGoogle Scholar
  109. 109.
    Provent P, Benito M, Hiba B, Farion R, Lopez-Larrubia P, Ballesteros P, et al. Serial in vivo spectroscopic nuclear magnetic resonance imaging of lactate and extracellular pH in rat gliomas shows redistribution of protons away from sites of glycolysis. Cancer Res. 2007;67(16):7638–45. doi: 10.1158/0008-5472.CAN-06-3459.PubMedCrossRefGoogle Scholar
  110. 110.
    Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt R, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature. 2008;453(7197):940–3. doi: 10.1038/nature07017.PubMedCrossRefGoogle Scholar
  111. 111.
    Cho H, Ackerstaff E, Carlin S, Lupu ME, Wang Y, Rizwan A, et al. Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia. Neoplasia. 2009;11(3):247–59. 2p following 59PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Esmaeili M, Hamans BC, Navis AC, van Horssen R, Bathen TF, Gribbestad IS, et al. IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma. Cancer Res. 2014;74(17):4898–907. doi: 10.1158/0008-5472.CAN-14-0008.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Eugene Kim
    • 1
    • 2
  • Morteza Esmaeili
    • 1
    • 2
  • Siver A. Moestue
    • 1
  • Tone F. Bathen
    • 1
  1. 1.Department of Circulation and Medical ImagingThe Norwegian University of Circulation and Medical Imaging - NTNUTrondheimNorway
  2. 2.Clinic of RadiologySt. Olavs University HospitalTrondheimNorway

Personalised recommendations