Skip to main content

Mean Systemic Filling Pressure Is an Old Concept but a New Tool for Fluid Management

  • Chapter
  • First Online:
Perioperative Fluid Management

Abstract

Purpose of the review: Most of our blood volume is contained in the venous compartment. The so-called compliant veins are an adjustable blood reservoir that is playing a paramount role in maintaining hemodynamic stability. Several autonomous reflexes govern the capacity of this reservoir. The mean systemic filling pressure (Pmsf) is the pressure in the cardiovascular system when there is no blood flow, and is pressure that can describe the capacitance of the venous reservoir. This pressure can be measured in human patients by both noninvasive or minimally invasive methods. However, the significance of this new hemodynamic variable is still not fully understood. The purpose of this review is to summarize what is known about the venous reservoir and the Pmsf and how we can use this information to assess the cardiovascular state of critically ill patients.

Findings: The venous tone is governed by sympathetic reflex, mainly related to baroreceptors via α(alpha)-adrenergic stimulation and to chemoreceptors. The vasoconstriction affects significantly the capacitance of the system by shifting blood between the stress and nonstress volume compartments. The mean systemic filling pressure (Pmsf) is the pivot pressure of the circulation, and a quantitative index of intravascular volume, and it is also governed by the mechanisms that affect the venous tone. Pmsf can be measured at bedside by three methods described in critically ill patients. This pressure can be also modified by fluid therapy and vasoactive medications.

Pmsf along with other hemodynamic variables can provide valuable information to correctly understand the cardiovascular status of critically ill patients and better managing fluid therapy and cardiovascular support. Future studies using Pmsf will show its usefulness for fluid administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malbrain ML, Chiumello D, Pelosi P, Bihari D, Innes R, Ranieri VM, et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit Care Med. 2005;33(2):315–22 [Comment Multicenter Study].

    Article  PubMed  Google Scholar 

  2. Malbrain ML, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46(5):361–80 [Meta-Analysis Review].

    Article  PubMed  Google Scholar 

  3. McArdle GT, Price G, Lewis A, Hood JM, McKinley A, Blair PH, et al. Positive fluid balance is associated with complications after elective open infrarenal abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2007;34(5):522–7.

    Article  CAS  PubMed  Google Scholar 

  4. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):R74 [Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guyton AC, Satterfield JH, Harris JW. Dynamics of central venous resistance with observations on static blood pressure. Am J Physiol. 1952;169(3):691–9.

    CAS  PubMed  Google Scholar 

  6. Guyton AC. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2006.

    Google Scholar 

  7. Rothe CF. Reflex control of veins and vascular capacitance. Physiol Rev. 1983;63(4):1281–342 [Research Support, U.S. Gov’t, P.H.S. Review].

    CAS  PubMed  Google Scholar 

  8. Heymans C. Reflexogenic areas of the cardiovascular system. Perspect Biol Med. 1960;3:409–17.

    Article  CAS  PubMed  Google Scholar 

  9. Shoukas AA, Sagawa K. Control of total systemic vascular capacity by the carotid sinus baroreceptor reflex. Circ Res. 1973;33(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  10. Hainsworth R, Karim F, Stoker JB. The influence of aortic baroreceptors on venous tone in the perfused hind limb of the dog. J Physiol. 1975;244(2):337–51 [Comparative Study].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shigemi K, Brunner MJ, Shoukas AA. Alpha- and beta-adrenergic mechanisms in the control of vascular capacitance by the carotid sinus baroreflex system. Am J Physiol. 1994;267(1 Pt 2):H201–10 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  12. Muller-Ruchholtz ER, Losch HM, Grund E, Lochner W. Effect of alpha adrenergic receptor stimulation on integrated systemic venous bed. Pflugers Arch. 1977;370(3):241–6.

    Article  CAS  PubMed  Google Scholar 

  13. Altura BM. Pharmacology of venular smooth muscle: new insights. Microvasc Res. 1978;16(1):91–117.

    Article  CAS  PubMed  Google Scholar 

  14. Muller-Ruchholtz ER, Losch HM, Grund E, Lochner W. Effect of beta adrenergic receptor stimulation on integrated systemic venous bed. Pflugers Arch. 1977;370(3):247–51.

    Article  CAS  PubMed  Google Scholar 

  15. Green JF. Mechanism of action of isoproterenol on venous return. Am J Physiol. 1977;232(2):H152–6 [Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  16. Imai Y, Satoh K, Taira N. Role of the peripheral vasculature in changes in venous return caused by isoproterenol, norepinephrine, and methoxamine in anesthetized dogs. Circ Res. 1978;43(4):553–61.

    Article  CAS  PubMed  Google Scholar 

  17. Rutlen DL, Supple EW, Powell Jr WJ. The role of the liver in the adrenergic regulation of blood flow from the splanchnic to the central circulation. Yale J Biol Med. 1979;52(1):99–106 [Research Support, U.S. Gov’t, P.H.S. Review].

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hainsworth R. Vascular capacitance: its control and importance. Rev Physiol Biochem Pharmacol. 1986;105:101–73 [Review].

    CAS  PubMed  Google Scholar 

  19. Kahler RL, Goldblatt A, Braunwald E. The effects of acute hypoxia on the systemic venous and arterial systems and on myocardial contractile force. J Clin Invest. 1962;41:1553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Price HL. Effects of carbon dioxide on the cardiovascular system. Anesthesiology. 1960;21:652–63.

    Article  CAS  PubMed  Google Scholar 

  21. Smith EE, Crowell JW. Influence of hypoxia on mean circulatory pressure and cardiac output. Am J Physiol. 1967;212(5):1067–9.

    CAS  PubMed  Google Scholar 

  22. Rothe CF, Flanagan AD, Maass-Moreno R. Reflex control of vascular capacitance during hypoxia, hypercapnia, or hypoxic hypercapnia. Can J Physiol Pharmacol. 1990;68(3):384–91 [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  23. Rothe CF, Stein PM, MacAnespie CL, Gaddis ML. Vascular capacitance responses to severe systemic hypercapnia and hypoxia in dogs. Am J Physiol. 1985;249(6 Pt 2):H1061–9 [Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  24. Browse NL, Shepherd JT. Response of veins of canine limb to aortic and carotid chemoreceptor stimulation. Am J Physiol. 1966;210(6):1435–41.

    CAS  PubMed  Google Scholar 

  25. Calvelo MG, Abboud FM, Ballard DR, Abdel-Sayed W. Reflex vascular responses to stimulation of chemoreceptors with nicotine and cyanide. Activation of adrenergic constriction in muscle and noncholinergic dilatation in dog’s paw. Circ Res. 1970;27(2):259–76.

    Article  CAS  PubMed  Google Scholar 

  26. Eckstein JW, Mark AL, Schmid PG, Iizuka T, Wendling MG. Responses of capacitance vessels to physiologic stimuli. Trans Am Clin Climatol Assoc. 1970;81:57–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mancia G. Influence of carotid baroreceptors on vascular responses to carotid chemoreceptor stimulation in the dog. Circ Res. 1975;36(2):270–6 [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  28. Iizuka T, Mark AL, Wendling MG, Schmid PG, Eckstein JW. Differences in responses of saphenous and mesenteric veins to reflex stimuli. Am J Physiol. 1970;219(4):1066–70.

    CAS  PubMed  Google Scholar 

  29. Pelletier CL, Shepherd JT. Venous responses to stimulation of carotid chemoreceptors by hypoxia and hypercapnia. Am J Physiol. 1972;223(1):97–103.

    CAS  PubMed  Google Scholar 

  30. Ishikawa N, Ichikawa T, Shigei T. Possible embryogenetical differences of the dog venous system in sensitivity to vasoactive substances. Jpn J Pharmacol. 1980;30(6):807–18 [Comparative Study].

    Article  CAS  PubMed  Google Scholar 

  31. Zimmerman BG, Abboud FM, Eckstein JW. Comparison of the effects of sympathomimetic amines upon venous and total vascular resistance in the foreleg of the dog. J Pharmacol Exp Ther. 1963;139:290–5.

    CAS  PubMed  Google Scholar 

  32. Rowell LB. Human cardiovascular control. New York: Oxford University Press; 1993.

    Google Scholar 

  33. Furness JB, Marshall JM. Correlation of the directly observed responses of mesenteric vessels of the rat to nerve stimulation and noradrenaline with the distribution of adrenergic nerves. J Physiol. 1974;239(1):75–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marshall JM. The influence of the sympathetic nervous system on individual vessels of the microcirculation of skeletal muscle of the rat. J Physiol. 1982;332:169–86 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Folkow B, Mellander S. Veins and venous tone. Am Heart J. 1964;68:397–408 [Review].

    Article  CAS  PubMed  Google Scholar 

  36. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974;54(1):75–159 [Review].

    CAS  PubMed  Google Scholar 

  37. Ninomiya I, Nisimaru N, Irisawa H. Sympathetic nerve activity to the spleen, kidney, and heart in response to baroceptor input. Am J Physiol. 1971;221(5):1346–51.

    CAS  PubMed  Google Scholar 

  38. Ninomiya I, Irisawa A, Nisimaru N. Nonuniformity of sympathetic nerve activity to the skin and kidney. Am J Physiol. 1973;224(2):256–64.

    CAS  PubMed  Google Scholar 

  39. Sutter MC. The pharmacology of isolated veins. Br J Pharmacol Chemother. 1965;24:742–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mellander S, Nordenfelt I. Comparative effects of dihydroergotamine and noradrenaline on resistance, exchange and capacitance functions in the peripheral circulation. Clin Sci. 1970;39(2):183–201 [Comparative Study].

    Article  CAS  PubMed  Google Scholar 

  41. Appleton CP, Lee RW, Martin GV, Olajos M, Goldman S. Alpha 1- and alpha 2-adrenoceptor stimulation: changes in venous capacitance in intact dogs. Am J Physiol. 1986;250(6 Pt 2):H1071–8 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  42. Patel P, Bose D, Greenway C. Effects of prazosin and phenoxybenzamine on alpha- and beta-receptor-mediated responses in intestinal resistance and capacitance vessels. J Cardiovasc Pharmacol. 1981;3(5):1050–9 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  43. Ruffolo Jr RR. Distribution and function of peripheral alpha-adrenoceptors in the cardiovascular system. Pharmacol Biochem Behav. 1985;22(5):827–33 [Review].

    Article  CAS  PubMed  Google Scholar 

  44. Shi AG, Ahmad S, Kwan CY, Daniel EE. Characterization of alpha-adrenoceptor subtypes by [3h]prazosin and [3h]rauwolscine binding to canine venous smooth muscle membranes. Can J Physiol Pharmacol. 1989;67(9):1067–73 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  45. Hirakawa S, Itoh H, Kotoo Y, Abe C, Endo T, Takada N, et al. The role of alpha and beta adrenergic receptors in constriction and dilation of the systemic capacitance vessels: a study with measurements of the mean circulatory pressure in dogs. Jpn Circ J. 1984;48(7):620–32.

    Article  CAS  PubMed  Google Scholar 

  46. Rothe CF, Flanagan AD, Maass-Moreno R. Role of beta-adrenergic agonists in the control of vascular capacitance. Can J Physiol Pharmacol. 1990;68(5):575–85 [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  47. Lee RW, Lancaster LD, Buckley D, Goldman S. Peripheral circulatory control of preload-afterload mismatch with angiotensin in dogs. Am J Physiol. 1987;253(1 Pt 2):H126–32 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  48. Pang CC, Tabrizchi R. The effects of noradrenaline, b-ht 920, methoxamine, angiotensin ii and vasopressin on mean circulatory filling pressure in conscious rats. Br J Pharmacol. 1986;89(2):389–94 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martin DS, McNeill JR. Whole body vascular capacitance response to vasopressin is mediated by autonomic function. Am J Physiol. 1991;261(2 Pt 2):H493–9 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  50. Chien Y, Pegram BL, Kardon MB, Frohlich ED. Anf does not increase total body venous compliance in conscious rats with myocardial infarction. Am J Physiol. 1992;262(2 Pt 2):H432–6.

    CAS  PubMed  Google Scholar 

  51. Ogilvie RI, Zborowska-Sluis D. Effects of nitroglycerin and nitroprusside on vascular capacitance of anesthetized ganglion-blocked dogs. J Cardiovasc Pharmacol. 1991;18(4):574–80 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  52. Ito H, Hirakawa S. Effects of vasodilators on the systemic capacitance vessels, a study with the measurement of the mean circulatory pressure in dogs. Jpn Circ J. 1984;48(4):388–404.

    Article  CAS  PubMed  Google Scholar 

  53. Price HL, Deutsch S, Marshall BE, Stephen GW, Behar MG, Neufeld GR. Hemodynamic and metabolic effects of hemorrhage in man, with particular reference to the splanchnic circulation. Circ Res. 1966;18(5):469–74.

    Article  CAS  PubMed  Google Scholar 

  54. Hainsworth R, Karim F. Responses of abdominal vascular capacitance in the anaesthetized dog to changes in carotid sinus pressure. J Physiol. 1976;262(3):659–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bayliss WM, Starling EH. Observations on venous pressures and their relationship to capillary pressures. J Physiol. 1894;16(3–4):159–318. 157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rothe CF. Mean circulatory filling pressure: its meaning and measurement. J Appl Physiol. 1993;74(2):499–509 [Research Support, U.S. Gov’t, P.H.S. Review].

    CAS  PubMed  Google Scholar 

  57. Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol. 1954;179(2):261–7.

    CAS  PubMed  Google Scholar 

  58. Prather JW, Taylor AE, Guyton AC. Effect of blood volume, mean circulatory pressure, and stress relaxation on cardiac output. Am J Physiol. 1969;216(3):467–72.

    CAS  PubMed  Google Scholar 

  59. Guyton AC, Lindsey AW, Kaufmann BN, Abernathy JB. Effect of blood transfusion and hemorrhage on cardiac output and on the venous return curve. Am J Physiol. 1958;194(2):263–7.

    CAS  PubMed  Google Scholar 

  60. Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol. 1955;180(3):463–8.

    CAS  PubMed  Google Scholar 

  61. Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.

    CAS  PubMed  Google Scholar 

  62. Brengelmann GL. Letter to the editor: Comments on “value and determinants of the mean systemic filling pressure in critically ill patients”. Am J Physiol Heart Circ Physiol. 2015;309(8):H1370–1 [Letter].

    Article  CAS  PubMed  Google Scholar 

  63. Brengelmann GL. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1532 [Comment Letter].

    Article  CAS  PubMed  Google Scholar 

  64. Brengelmann GL. Counterpoint: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is not correct. J Appl Physiol. 2006;101(5):1525–6; discussion 1526–1527. [Comment].

    Article  CAS  PubMed  Google Scholar 

  65. Schipke JD, Heusch G, Sanii AP, Gams E, Winter J. Static filling pressure in patients during induced ventricular fibrillation. Am J Physiol Heart Circ Physiol. 2003;285(6):H2510–5.

    Article  CAS  PubMed  Google Scholar 

  66. Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol. 1984;56(3):765–71 [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    CAS  PubMed  Google Scholar 

  67. Versprille A, Jansen JR. Mean systemic filling pressure as a characteristic pressure for venous return. Pflugers Arch. 1985;405(3):226–33.

    Article  CAS  PubMed  Google Scholar 

  68. Den Hartog EA, Versprille A, Jansen JR. Systemic filling pressure in intact circulation determined on basis of aortic vs. central venous pressure relationships. Am J Physiol. 1994;267(6 Pt 2):H2255–8 [Comparative Study Research Support, Non-U.S. Gov’t].

    Google Scholar 

  69. Hiesmayr M, Jansen JR, Versprille A. Effects of endotoxin infusion on mean systemic filling pressure and flow resistance to venous return. Pflugers Arch. 1996;431(5):741–7.

    Article  CAS  PubMed  Google Scholar 

  70. Maas JJ, Geerts BF, van den Berg PC, Pinsky MR, Jansen JR. Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients. Crit Care Med. 2009;37(3):912–8 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  71. Keller G, Desebbe O, Benard M, Bouchet JB, Lehot JJ. Bedside assessment of passive leg raising effects on venous return. J Clin Monit Comput. 2011;25(4):257–63 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  72. Mahjoub Y, Touzeau J, Airapetian N, Lorne E, Hijazi M, Zogheib E, et al. The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension. Crit Care Med. 2010;38(9):1824–9.

    Article  PubMed  Google Scholar 

  73. Parkin WG, Wright CA. Three dimensional closed loop control of the human circulation. Int J Clin Monit Comput. 1991;8(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  74. Parkin WG, Leaning MS. Therapeutic control of the circulation. J Clin Monit Comput. 2008;22(6):391–400.

    Article  PubMed  Google Scholar 

  75. Parkin G, Wright C, Bellomo R, Boyce N. Use of a mean systemic filling pressure analogue during the closed-loop control of fluid replacement in continuous hemodiafiltration. J Crit Care. 1994;9(2):124–33 [Clinical Trial].

    Article  CAS  PubMed  Google Scholar 

  76. Cecconi M, Aya HD, Geisen M, Ebm C, Fletcher N, Grounds RM, et al. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med. 2013;39(7):1299–305.

    Article  PubMed  Google Scholar 

  77. Gupta K, Sondergaard S, Parkin G, Leaning M, Aneman A. Applying mean systemic filling pressure to assess the response to fluid boluses in cardiac post-surgical patients. Intensive care medicine. Intensive Care Med. 2015;41(2):265–72.

    Article  PubMed  Google Scholar 

  78. Anderson RM. The gross physiology of the cardiovascular system. 2012th ed. Tucson: Racquet Press; 1993.

    Google Scholar 

  79. Aya H, Rhodes A, Fletcher N, Grounds M, Cecconi M, editors. Transient stop-flow arm arterial-venous equilibrium pressure measurement: determination of precision of the technique. Annual Congress of the European Society of Intensive Care Medicine. Barcelona/New York: Springer; 2014

    Google Scholar 

  80. Maas JJ, Pinsky MR, Geerts BF, de Wilde RB, Jansen JR. Estimation of mean systemic filling pressure in postoperative cardiac surgery patients with three methods. Intensive Care Med. 2012;38(9):1452–60 [Evaluation Studies Research Support, N.I.H., Extramural].

    Article  PubMed  PubMed Central  Google Scholar 

  81. Repesse X, Charron C, Fink J, Beauchet A, Deleu F, Slama M, et al. Value and determinants of the mean systemic filling pressure in critically ill patients. Am J Physiol Heart Circ Physiol. 2015:ajpheart 00413 02015.

    Google Scholar 

  82. Deschamps A, Magder S. Baroreflex control of regional capacitance and blood flow distribution with or without alpha-adrenergic blockade. Am J Physiol. 1992;263(6 Pt 2):H1755–63 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  83. Drees JA, Rothe CF. Reflex venoconstriction and capacity vessel pressure-volume relationships in dogs. Circ Res. 1974;34(3):360–73.

    Article  CAS  PubMed  Google Scholar 

  84. Aya HD, Rhodes A, Fletcher N, Grounds RM, Cecconi M. Transient stop-flow arm arterial-venous equilibrium pressure measurement: Determination of precision of the technique. J Clin Monit Comput. 2016;30(1):55–61.

    Article  PubMed  Google Scholar 

  85. Rangappa R, Sondergaard S, Aneman A. Improved consistency in interpretation and management of cardiovascular variables by intensive care staff using a computerised decision-support system. Crit Care Resusc. 2014;16(1):48–53 [Comparative Study].

    PubMed  Google Scholar 

  86. Sondergaard S, Wall P, Cocks K, Parkin WG, Leaning MS. High concordance between expert anaesthetists’ actions and advice of decision support system in achieving oxygen delivery targets in high-risk surgery patients. Br J Anaesth. 2012;108(6):966–72 [Randomized Controlled TrialResearch Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  87. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the european society of intensive care medicine. Intensive Care Med. 2014;40(12):1795–815.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Maas JJ, Pinsky MR, Aarts LP, Jansen JR. Bedside assessment of total systemic vascular compliance, stressed volume, and cardiac function curves in intensive care unit patients. Anesth Analg. 2012;115(4):880–7 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  89. Maas JJ, Pinsky MR, de Wilde RB, de Jonge E, Jansen JR. Cardiac output response to norepinephrine in postoperative cardiac surgery patients: Interpretation with venous return and cardiac function curves. Crit Care Med. 2013;41(1):143–50 [Research Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Hollmann D. Aya received financial support for educational programs and for attending symposia from Applied Physiology and LiDCO.

Maurizio Cecconi received honoraria for speaking at symposia, financial support for educational programs, and honoraria for advisory board from Edwards Lifesciences, LiDCO, Deltex, Applied Physiology, Massimo, Bmeye, Cheetah, and Imacor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hollmann D. Aya MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aya, H.D., Cecconi, M. (2016). Mean Systemic Filling Pressure Is an Old Concept but a New Tool for Fluid Management. In: Farag, E., Kurz, A. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-319-39141-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39141-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39139-7

  • Online ISBN: 978-3-319-39141-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics