Skip to main content

Balanced Versus Unbalanced Salt Solutions in the Perioperative Period

  • Chapter
  • First Online:
Perioperative Fluid Management

Abstract

Unlike organic electrolytes, elements in the blood, such as sodium (Na+) and chloride (Cl), cannot be metabolized and their concentrations thus are dependent upon absorption and excretion. The concentration of Cl is on average 40 meq/L less than the concentration of Na+ and this is an important determinant of hydrogen ion (H+) concentration in blood (i.e., pH). Increasing Cl concentration produces acidemia and potentially affects renal, gastrointestinal, immune, and coagulation functions. There, thus, has been increasing interest in the use of intravenous solutions that have lower Cl concentrations. These solutions require anions besides Cl to “balance” the charge from Na+. The major anions are bicarbonate, lactate, acetate, and gluconate. The physiological actions of these electrolytes have been well described but the evidence of a clinical benefit is very limited. Three large observational studies demonstrated potential benefits of low Cl solutions on renal function. There also has been suggestions of benefits for hospital survival and reduction of infections. This was not supported by the recent only reasonable-sized randomized clinical trial to test causality. However, the amount of fluid given was not large and the population was generally at low risk, thus limiting the power of the study to detect harm. Thus, the question remains unanswered in patients who are at higher risk. It is unlikely that a pragmatic trial will be helpful and future studies will need to target subjects who are expected to receive large volumes of resuscitations fluid and who have risk factors that may make them less able to handle large Cl loads, such as diabetics, subjects with large extracellular volume, recent intravenous contrast, periods of hypotension, and use of catecholamines. More specific endpoints besides renal function also need to be considered such as gastrointestinal function, rate of infections, red cell survival, and coagulation. Based on current evidence, survival studies would likely require very large sample sizes with subjects at increased risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14(4):226.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kellum JA, Shaw AD. Assessing toxicity of intravenous crystalloids in critically ill patients. JAMA. 2015;314(16):1695–7.

    Article  PubMed  Google Scholar 

  3. Butterworth JF, Mythen MG. Should “normal” saline be our usual choice in normal surgical patients? Anesth Analg. 2013;117(2):290–1.

    Article  PubMed  Google Scholar 

  4. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(13):1243–51.

    Article  CAS  PubMed  Google Scholar 

  5. Morgan TJ. The ideal crystalloid - what is ‘balanced’? Curr Opin Crit Care. 2013;19(4):299–307.

    Article  PubMed  Google Scholar 

  6. Magder S. Balanced versus unbalanced salt solutions: what difference does it make? Best Pract Res Clin Anaesthesiol. 2014;28:235–47.

    Article  PubMed  Google Scholar 

  7. “Balanced salt solution.” A Dictionary of Nursing. 2008. Encyclopedia.com. http://www.encyclopedia.com/doc/1O62-balancedsaltsolution.html. Accessed 18 Jan 2016.

  8. Waikar SS, Winkelmayer WC. Saving the kidneys by sparing intravenous chloride? JAMA. 2012;308(15):1583–5.

    Article  CAS  PubMed  Google Scholar 

  9. Magder S. Physiologic principles of fluid management. Pediatr Crit Care Med. 2001;2 Suppl 3:s4–9.

    Google Scholar 

  10. Pitts RF. Mechanisms of reabsorption and excretion of ions and water. Physiology of the kidney and body fluids: an introductory text. 2nd ed. Chicago: Year Book Medical Publishers Incorporated; 1968. p. 94–128.

    Google Scholar 

  11. Else PL, Turner N, Hulbert AJ. The evolution of endothermy: role for membranes and molecular activity. Physiol Biochem Zool. 2004;77(6):950–8.

    Article  PubMed  Google Scholar 

  12. Wilson TH, Maloney PC. Speculations on the evolution of ion transport mechanisms. Fed Proc. 1976;35(10):2174–9.

    CAS  PubMed  Google Scholar 

  13. Wilson TH, Lin EC. Evolution of membrane bioenergetics. J Supramol Struct. 1980;13(4):421–46.

    Article  CAS  PubMed  Google Scholar 

  14. Brett CL, Donowitz M, Rao R. Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol. 2005;288(2):C223–39.

    Article  CAS  PubMed  Google Scholar 

  15. Titze J, Muller DN, Luft FC. Taking another “look” at sodium. Can J Cardiol. 2014;30(5):473–5.

    Article  PubMed  Google Scholar 

  16. Stewart PA. Modern quantitative acid–base chemistry. Can J Physiol Pharmacol. 1983;61(12):1444–61.

    Article  CAS  PubMed  Google Scholar 

  17. Titze J, Dahlmann A, Lerchl K, Kopp C, Rakova N, Schroder A, et al. Spooky sodium balance. Kidney Int. 2014;85(4):759–67.

    Article  CAS  PubMed  Google Scholar 

  18. Uchida S. Physiological role of CLC-K1 chloride channel in the kidney. Nephrol Dial Transplant. 2000;15 Suppl 6:14–5.

    Article  CAS  PubMed  Google Scholar 

  19. Uchida S. In vivo role of CLC chloride channels in the kidney. Am J Physiol Renal Physiol. 2000;279(5):F802–8.

    CAS  PubMed  Google Scholar 

  20. Berend K, van Hulsteijn LH, Gans RO. Chloride: the queen of electrolytes? Eur J Intern Med. 2012;23(3):203–11.

    Article  CAS  PubMed  Google Scholar 

  21. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342(21):1581–9.

    Article  CAS  PubMed  Google Scholar 

  22. Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342(20):1493–9.

    Article  CAS  PubMed  Google Scholar 

  23. Stewart PA. How to understand acid–base. A quantitative acid–base primer for biology and medicine. New York: Elsevier North Holland; 1981.

    Google Scholar 

  24. Roos A, Boron WF. Intracellular pH. Physiol Rev. 1981;61(2):296–434.

    CAS  PubMed  Google Scholar 

  25. Kellum JA, Elbers PW. Peter Stewart’s textbook of acid-base, 2E. www.acidbase.org. 2009.

  26. Edwards JC. Chloride transport. Compr Physiol. 2012;2(2):1061–92.

    PubMed  Google Scholar 

  27. Hansen PB, Jensen BL, Skott O. Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension. 1998;32(6):1066–70.

    Article  CAS  PubMed  Google Scholar 

  28. Wesson Jr LG, Anslow Jr WP. Relationship of changes in glomerular filtration, plasma chloride and bicarbonate concentrations and urinary osmotic load to renal excretion of chloride. Am J Physiol. 1955;180(2):237–48.

    CAS  PubMed  Google Scholar 

  29. Wesson Jr LG, Anslow Jr WP, Raisz LG, Bolomey AA, Ladd M. Effect of sustained expansion of extracellular fluid volume upon filtration rate, renal plasma flow and electrolyte and water excretion in the dog. Am J Physiol. 1950;162(3):677–86.

    PubMed  Google Scholar 

  30. Vaitkevicius H, Turner I, Spalding A, Lockette W. Chloride increases adrenergic receptor-mediated platelet and vascular responses. Am J Hypertens. 2002;15(6):492–8.

    Article  CAS  PubMed  Google Scholar 

  31. Menegazzi R, Busetto S, Cramer R, Dri P, Patriarca P. Role of intracellular chloride in the reversible activation of neutrophil beta 2 integrins: a lesson from TNF stimulation. J Immunol. 2000;165(8):4606–14.

    Article  CAS  PubMed  Google Scholar 

  32. Hamilton DL, Roe WE. Electrolyte levels and net fluid and electrolyte movements in the gastrointestinal tract of weanling swine. Can J Comp Med. 1977;41(3):241–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kato A, Romero MF. Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol. 2011;73:261–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol. 2000;62:535–72.

    Article  CAS  PubMed  Google Scholar 

  35. Moder KG, Hurley DL. Fatal hypernatremia from exogenous salt intake: report of a case and review of the literature. Mayo Clin Proc. 1990;65(12):1587–94.

    Article  CAS  PubMed  Google Scholar 

  36. Carlberg DJ, Borek HA, Syverud SA, Holstege CP. Survival of acute hypernatremia due to massive soy sauce ingestion. J Emerg Med. 2013;45(2):228–31.

    Article  PubMed  Google Scholar 

  37. Sartorius OW, Roemmelt JC, Pitts RF. The renal regulation of acid–base balance in man; the nature of the renal compensations in ammonium chloride acidosis. J Clin Invest. 1949;28(3):423–39.

    Article  CAS  PubMed Central  Google Scholar 

  38. Ring T, Frische S, Nielsen S. Clinical review: renal tubular acidosis--a physicochemical approach. Crit Care. 2005;9(6):573–80.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gamble JL, Blackfan KD, Hamilton B. A study of the diuretic action of acid producing salts. J Clin Invest. 1925;1(4):359–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18–24.

    Article  PubMed  Google Scholar 

  42. Davis GR, Santa Ana CA, Morawski S, Fordtran JS. Active chloride secretion in the normal human jejunum. J Clin Invest. 1980;66(6):1326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Russo MA, Hogenauer C, Coates Jr SW, Santa Ana CA, Porter JL, Rosenblatt RL, et al. Abnormal passive chloride absorption in cystic fibrosis jejunum functionally opposes the classic chloride secretory defect. J Clin Invest. 2003;112(1):118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chowdhury AH, Lobo DN. Fluids and gastrointestinal function. Curr Opin Clin Nutr Metab Care. 2011;14(5):469–76.

    Article  PubMed  Google Scholar 

  45. Wilkes NJ, Woolf R, Mutch M, Mallett SV, Peachey T, Stephens R, et al. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid–base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93:811–6.

    Article  CAS  PubMed  Google Scholar 

  46. Moretti EW, Robertson KM, el-Moalem H, Gan TJ. Intraoperative colloid administration reduces postoperative nausea and vomiting and improves postoperative outcomes compared with crystalloid administration. Anesth Analg. 2003;96(611):617.

    Google Scholar 

  47. Figge J, Mydosh T, Fencl V. Serum proteins and acid–base equilibria: a follow-up. J Lab Clin Med. 1992;120:713–9.

    CAS  PubMed  Google Scholar 

  48. Figge J, Rossing TH, Fencl V. The role of serum proteins in acid–base equilibria. J Lab Clin Med. 1991;117:453–67.

    CAS  PubMed  Google Scholar 

  49. Kirkendol PL, Starrs J, Gonzalez FM. The effects of acetate, lactate, succinate and gluconate on plasma pH and electrolytes in dogs. Trans Am Soc Artif Intern Organs. 1980;26:323–7.

    CAS  PubMed  Google Scholar 

  50. Muller KR, Gentile A, Klee W, Constable PD. Importance of the effective strong ion difference of an intravenous solution in the treatment of diarrheic calves with naturally acquired acidemia and strong ion (metabolic) acidosis. J Vet Intern Med. 2012;26(3):674–83.

    Article  CAS  PubMed  Google Scholar 

  51. Kraut JA, Madias NE. Lactic acidosis. N Engl J Med. 2014;371(24):2309–19.

    Article  PubMed  Google Scholar 

  52. Hartmann AF, Senn MJ. Studies in the metabolism of sodium r-lactate. I. Response of normal human subjects to the intravenous injection of sodium r-lactate. J Clin Invest. 1932;11(2):327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nalos M, Leverve X, Huang S, Weisbrodt L, Parkin R, Seppelt I, et al. Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: a pilot randomised controlled clinical trial. Crit Care. 2014;18(2):R48.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Reid F, Lobo DN, Williams RN, Rowlands BJ, Allison SP. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci. 2003;104(1):17–24.

    CAS  PubMed  Google Scholar 

  55. Hartmann AF, Senn MJ. Studies in the metabolism of sodium r-lactate. II. Response of human subjects with acidosis to the intravenous injection of sodium r-lactate. J Clin Invest. 1932;11(2):337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O’'Malley CM, Frumento RJ, Hardy MA, Benvenisty AI, Brentjens TE, Mercer JS, et al. A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth Analg. 2005;100(5):1518–24, table.

    Article  Google Scholar 

  57. Khajavi MR, Etezadi F, Moharari RS, Imani F, Meysamie AP, Khashayar P, et al. Effects of normal saline vs. lactated ringer’s during renal transplantation. Ren Fail. 2008;30(5):535–9.

    Article  CAS  PubMed  Google Scholar 

  58. Brezis M, Spokes K, Silva P, Epstein FH. Lactate increases potassium secretion by perfused rat kidney. Am J Physiol. 1986;251(5 Pt 2):F873–8.

    CAS  PubMed  Google Scholar 

  59. Kirkendol PL, Robie NW, Gonzalez FM, Devia CJ. Cardiac and vascular effects of infused sodium acetate in dogs. Trans Am Soc Artif Intern Organs. 1978;24:714–8.

    CAS  PubMed  Google Scholar 

  60. Daugirdas JT, Nawab ZM, Hayashi JA. Hemodialysis hemodynamics in an animal model: effect of using an acetate-buffered dialysate. J Lab Clin Med. 1986;107(6):517–24.

    CAS  PubMed  Google Scholar 

  61. Aizawa Y, Shibata A, Ohmori T, Kamimura A, Takahashi S, Hirasawa Y. Hemodynamic effects of acetate in man. J Dial. 1978;2(3):235–42.

    Article  CAS  PubMed  Google Scholar 

  62. Aizawa Y, Ohmori T, Imai K, Nara Y, Matsuoka M, Hirasawa Y. Depressant action of acetate upon the human cardiovascular system. Clin Nephrol. 1977;8(5):477–80.

    CAS  PubMed  Google Scholar 

  63. Mehta BR, Fischer D, Ahmad M, DuBose Jr TD. Effects of acetate and bicarbonate hemodialysis on cardiac function in chronic dialysis patients. Kidney Int. 1983;24(6):782–7.

    Article  CAS  PubMed  Google Scholar 

  64. Van Geelen JA, Woittiez AJ, Schalekamp MA. Bicarbonate versus acetate hemodialysis in ventilated patients. Clin Nephrol. 1987;28(3):130–3.

    PubMed  Google Scholar 

  65. Davies PG, Venkatesh B, Morgan TJ, Presneill JJ, Kruger PS, Thomas BJ, et al. Plasma acetate, gluconate and interleukin-6 profiles during and after cardiopulmonary bypass: a comparison of Plasma-Lyte 148 with a bicarbonate-balanced solution. Crit Care. 2011;15(1):R21.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Petraitiene R, Petraitis V, Witt III JR, Durkin MM, Bacher JD, Wheat LJ, et al. Galactomannan antigenemia after infusion of gluconate-containing Plasma-Lyte. J Clin Microbiol. 2011;49(12):4330–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fink MP. Ethyl pyruvate. Curr Opin Anaesthesiol. 2008;21(2):160–7.

    Article  PubMed  Google Scholar 

  68. Sims CA, Wattanasirichaigoon S, Menconi MJ, Ajami AM, Fink MP. Ringer’s ethyl pyruvate solution ameliorates ischemia/reperfusion-induced intestinal mucosal injury in rats. Crit Care Med. 2001;29(8):1513–8.

    Article  CAS  PubMed  Google Scholar 

  69. Nett-Guerrero E, Swaminathan M, Grigore AM, Roach GW, Aberle LG, Johnston JM, et al. A phase II multicenter double-blind placebo-controlled study of ethyl pyruvate in high-risk patients undergoing cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2009;23(3):324–9.

    Article  Google Scholar 

  70. Yang R, Zou X, Koskinen ML, Tenhunen J. Ethyl pyruvate reduces liver injury at early phase but impairs regeneration at late phase in acetaminophen overdose. Crit Care. 2012;16(1):R9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wagner F, Asfar P, Georgieff M, Radermacher P, Wagner K. Ethyl pyruvate for the treatment of acetaminophen intoxication: alternative to N-acetylcysteine? Crit Care. 2012;16(1):112.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255(5):821–9.

    Article  PubMed  Google Scholar 

  73. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.

    Article  CAS  PubMed  Google Scholar 

  74. McCluskey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Beattie WS. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg. 2013;117(2):412–21.

    Article  PubMed  Google Scholar 

  75. Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Magder MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magder, S. (2016). Balanced Versus Unbalanced Salt Solutions in the Perioperative Period. In: Farag, E., Kurz, A. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-319-39141-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39141-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39139-7

  • Online ISBN: 978-3-319-39141-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics