Skip to main content

Carotenoid Biosynthesis in Daucus carota

Part of the Subcellular Biochemistry book series (SCBI,volume 79)

Abstract

Carrot (Daucus carota) is one of the most important vegetable cultivated worldwide and the main source of dietary provitamin A. Contrary to other plants, almost all carrot varieties accumulate massive amounts of carotenoids in the root, resulting in a wide variety of colors, including those with purple, yellow, white, red and orange roots. During the first weeks of development the root, grown in darkness, is thin and pale and devoid of carotenoids. At the second month, the thickening of the root and the accumulation of carotenoids begins, and it reaches its highest level at 3 months of development. This normal root thickening and carotenoid accumulation can be completely altered when roots are grown in light, in which chromoplasts differentiation is redirected to chloroplasts development in accordance with an altered carotenoid profile. Here we discuss the current evidence on the biosynthesis of carotenoid in carrot roots in response to environmental cues that has contributed to our understanding of the mechanism that regulates the accumulation of carotenoids, as well as the carotenogenic gene expression and root development in D. carota.

Keywords

  • Carrot
  • β-carotene
  • Root development
  • Gene expression
  • Plastid development

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-39126-7_7
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-39126-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3

References

  • Alasalvar C, Grigor JM, Zhang D, Quantick PC, Shahidi F (2001) Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J Agric Food Chem 49:1410–1416

    CAS  CrossRef  PubMed  Google Scholar 

  • Arango J, Wust F, Beyer P, Welsch R (2010) Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta 232:1251–1262

    CAS  CrossRef  PubMed  Google Scholar 

  • Arango J, Jourdan M, Geoffriau E, Beyer P, Welsch R (2014) Carotene hydroxylase activity determines the levels of both alpha-carotene and total carotenoids in orange carrots. Plant Cell 26:2223–2233

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Arscott SA, Simon PW, Tanumihardjo SA (2010) Anthocyanins in purple-orange carrots (Daucus carota L.) do not influence the bioavailability of beta-carotene in young women. J Agric Food Chem 58:2877–2881

    CAS  CrossRef  PubMed  Google Scholar 

  • Arscott SA, Tanumihardjo SA (2010) Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Compr Rev Food Sci Food Saf 9:223–239

    CAS  CrossRef  Google Scholar 

  • Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321

    CAS  CrossRef  PubMed  Google Scholar 

  • Aviv D, Amsellem Z, Gressel J (2002) Transformation of carrots with mutant acetolactate synthase for Orobanche (broomrape) control. Pest Manag Sci 58:1187–1193

    CAS  CrossRef  PubMed  Google Scholar 

  • Baranska M, Baranski R, Schulz H, Nothnagel T (2006) Tissue-specific accumulation of carotenoids in carrot roots. Planta 224:1028–1037

    CAS  CrossRef  PubMed  Google Scholar 

  • Ben-Shaul Y, Shimon K (1965) Development and structure of carotene bodies in carrot roots. Bot Gaz 126:79–85

    CAS  CrossRef  Google Scholar 

  • Brown ED, Micozzi MS, Craft NE, Bieri JG, Beecher G, Edwards BK, Rose A, Taylor PR, Smith JC Jr (1989) Plasma carotenoids in normal men after a single ingestion of vegetables or purified beta-carotene. Am J Clin Nutr 49:1258–1265

    CAS  PubMed  Google Scholar 

  • Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, Finnegan EJ, Turnbull C, Pogson BJ (2009) Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell 21:39–53

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274

    CAS  CrossRef  PubMed  Google Scholar 

  • Clotault J, Peltier D, Berruyer R, Thomas M, Briard M, Geoffriau E (2008) Expression of carotenoid biosynthesis genes during carrot root development. J Exp Bot 59:3563–3573

    CAS  CrossRef  PubMed  Google Scholar 

  • Clotault J, Peltier D, Soufflet-Freslon V, Briard M, Geoffriau E (2012) Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots. PLoS One 7:e38724

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chen W, Punja Z (2002) Transgenic herbicide- and disease-tolerant carrot (Daucus carota L.) plants obtained through Agrobacterium-mediated transformation. Plant Cell Rep 20:929–935

    CAS  CrossRef  Google Scholar 

  • Da Silva EA, Vieira MA, Vieira EA, De Mello Castanho Amboni RD, Amante ER, Teixeira E (2007) Chemical, physical and sensory parameters of different carrot varieties (Daucus carota L.). J Food Process Eng 30:746–756

    CrossRef  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    CAS  CrossRef  PubMed  Google Scholar 

  • Deruere J, Romer S, D’Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119–133

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dumas Y, Dadomo M, Di Lucca G, Grolier P (2003) Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J Sci Food Agric 83:369–382

    CAS  CrossRef  Google Scholar 

  • Egea I, Barsan C, Bian W, Purgatto E, Latche A, Chervin C, Bouzayen M, Pech JC (2010) Chromoplast differentiation: current status and perspectives. Plant cell Physiol 51:1601–1611

    CAS  CrossRef  PubMed  Google Scholar 

  • FAOSTAT (2014) Database on agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Farre G, Bai C, Twyman RM, Capell T, Christou P, Zhu C (2011) Nutritious crops producing multiple carotenoids – a metabolic balancing act. Trends Plant Sci 16:532–540

    CAS  CrossRef  PubMed  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    CAS  CrossRef  PubMed  Google Scholar 

  • Fuentes P, Pizarro L, Moreno JC, Handford M, Rodriguez-Concepcion M, Stange C (2012) Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Mol Biol 79:47–59

    CAS  CrossRef  PubMed  Google Scholar 

  • Giorio G, Stigliani AL, D’Ambrosio C (2007) Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions. Transgenic Res 16:15–28

    CAS  CrossRef  PubMed  Google Scholar 

  • Gopalan C, Sastri BVR, Balasubramanian SC, Nutrition NIo (1989) Nutritive value of Indian foods. National Institute of Nutrition, Indian Council of Medical Research

    Google Scholar 

  • Grassmann J, Schnitzler WH, Habegger R (2007) Evaluation of different coloured carrot cultivars on antioxidative capacity based on their carotenoid and phenolic contents. Int J Food Sci Nutr 58:603–611

    CAS  CrossRef  PubMed  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    CAS  CrossRef  PubMed  Google Scholar 

  • Hager TJ, Howard LR (2006) Processing effects on carrot phytonutrients. Hortic Sci 41:74–79

    CAS  Google Scholar 

  • Hart DJ, Scott KJ (1995) Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem 54:101–111

    CAS  CrossRef  Google Scholar 

  • Hasler CM, Brown AC (2009) Position of the American Dietetic Association: functional foods. J Am Diet Assoc 109(4):735–746

    CrossRef  PubMed  Google Scholar 

  • Heiwood S, Nolte AW, Bernatchez L (1983) Relationship and evolution in the Daucus carota complex. Israel J Bot 32:51–65

    Google Scholar 

  • Heinonen MI (1990) Carotenoids and pro-vitamin A activity of carrot (Daucus carota L) cultivars. J Agric Food Chem 38:609–612

    CAS  CrossRef  Google Scholar 

  • Hey H (2010) [To compare beta carotene and vitamin D is as comparing apples to pears!]. Ugeskrift for laeger 172:2784

    PubMed  Google Scholar 

  • Holland B, Widdowson EM, Unwin ID, Buss DH (1991) Vegetables, herbs and spices: fifth supplement to McCance and Widdowson’s the composition of foods. Royal Society of Chemistry, Letchworth

    CrossRef  Google Scholar 

  • Horvitz MA, Simon PW, Tanumihardjo SA (2004) Lycopene and beta-carotene are bioavailable from lycopene ‘red’ carrots in humans. Eur J Clin Nutr 58:803–811

    CAS  CrossRef  PubMed  Google Scholar 

  • Imani J, Baltruschat H, Stein E, Jia G, Vogelsberg J, Kogel KH, Huckelhoven R (2006) Expression of barley BAX Inhibitor-1 in carrots confers resistance to Botrytis cinerea. Mol Plant Pathol 7:279–284

    CAS  CrossRef  PubMed  Google Scholar 

  • International Plant Genetic Resources I, Badra T (1998) Descriptors for wild and cultivated carrots (Daucus Carota L.). International Plant Genetic Resources Institute

    Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48(6):657–666. doi:10.1038/ng.3565

    CAS  CrossRef  PubMed  Google Scholar 

  • Jayaraj J, Punja ZK (2008) Transgenic carrot plants accumulating ketocarotenoids show tolerance to UV and oxidative stresses. Plant Physiol Biochem 46:875–883

    CAS  CrossRef  PubMed  Google Scholar 

  • Just BJ, Santos CAF, Fonseca MEN, Boiteux LS, Oloizia BB, Simon PW (2007) Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114:693–704

    CAS  CrossRef  PubMed  Google Scholar 

  • Just BJ, Santos CA, Yandell BS, Simon PW (2009) Major QTL for carrot color are positionally associated with carotenoid biosynthetic genes and interact epistatically in a domesticated x wild carrot cross. Theor Appl Genet 119:1155–1169

    CrossRef  PubMed  Google Scholar 

  • Kim JE, Rensing KH, Douglas CJ, Cheng KM (2010) Chromoplasts ultrastructure and estimated carotene content in root secondary phloem of different carrot varieties. Planta 231:549–558

    CAS  CrossRef  PubMed  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59

    CAS  CrossRef  PubMed  Google Scholar 

  • Kochar GK, Sharma KK (1992) Fiber content and its composition in commonly consumed Indian vegetables and fruits. J Food Sci Technol 29:187–190

    CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Li BW, Andrews KW, Pehrsson PR (2002) Individual sugars, soluble, and insoluble dietary fiber contents of 70 high consumption foods. J Food Compos Anal 15:715–723

    CAS  CrossRef  Google Scholar 

  • Li FQ, Vallabhaneni R, Wurtzel ET (2008) PSY3, a new member of the phytoene synthase gene family conserved in the poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:1333–1345

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Li L, Van Eck J (2007) Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgenic Res 16:581–585

    CrossRef  PubMed  Google Scholar 

  • Lu S, Li L (2008) Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Plant Biol 50:778–785

    CAS  CrossRef  PubMed  Google Scholar 

  • Maass D, Arango J, Wust F, Beyer P, Welsch R (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One 4:e6373

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Mackevic VI (1929) The carrot of Afghanistan. Bul Appl Bot Genet Plant Breed 20:517–562

    Google Scholar 

  • Marlett JA (1992) Content and composition of dietary fiber in 117 frequently consumed foods. J Am Diet Assoc 92:175–186

    CAS  PubMed  Google Scholar 

  • Meier S, Tzfadia O, Vallabhaneni R, Gehring C, Wurtzel ET (2011) A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Syst Biol 5:77

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Melchers LS, Stuiver MH (2000) Novel genes for disease-resistance breeding. Curr Opin Plant Biol 3:147–152

    CAS  CrossRef  PubMed  Google Scholar 

  • Montilla EC, Arzaba MR, Hillebrand S, Winterhalter P (2011) Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze. J Agric Food Chem 59:3385–3390

    CAS  CrossRef  PubMed  Google Scholar 

  • Moreno JC, Cerda A, Simpson K, Lopez-Diaz I, Carrera E, Handford M, Stange C (2016) Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene beta-cyclase (Dclcyb1) expression. J Exp Bot 67:2325–2338

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Moreno JC, Pizarro L, Fuentes P, Handford M, Cifuentes V, Stange C (2013) Levels of lycopene beta-cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota. PLoS One 8:e58144

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Muller H, Bub A, Watzl B, Rechkemmer G (1999) Plasma concentrations of carotenoids in healthy volunteers after intervention with carotenoid-rich foods. Eur J Nutr 38:35–44

    CAS  CrossRef  PubMed  Google Scholar 

  • Naik PSCA, Khurana SMP, Kallo G (2003) Genetic manipulation of carotenoid pathway in higher plants. Curr Sci 85:1423–1430

    CAS  Google Scholar 

  • Nawirska A, Kwaśniewska M (2005) Dietary fibre fractions from fruit and vegetable processing waste. Food Chem 91:221–225

    CAS  CrossRef  Google Scholar 

  • Nicolle C, Simon G, Rock E, Amouroux P, Rémésy C (2004) Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J Am Soc Hortic Sci 129:523–529

    CAS  Google Scholar 

  • Park S, Kim C-K, Pike L, Smith R, Hirschi K (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breed 14:275–282

    CrossRef  Google Scholar 

  • Prohens-Tomás J, Nuez F (2007) Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Springer, New York

    Google Scholar 

  • Punja ZK, Raharjo SHT (1996) Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Dis 80:999–1005

    CAS  CrossRef  Google Scholar 

  • Rodriguez-Concepcion M, Boronat A (2015) Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Curr Opin Plant Biol 25:17–22. doi:10.1016/j.pbi.2015.04.001

    CAS  CrossRef  PubMed  Google Scholar 

  • Rodriguez-Concepcion M, Stange C (2013) Biosynthesis of carotenoids in carrot: an underground story comes to light. Arch Biochem Biophys 539:110–116

    CAS  CrossRef  PubMed  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A 97:11102–11107

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rong J, Lammers Y, Strasburg J, Schidlo N, Ariyurek Y, de Jong T, Klinkhamer P, Smulders M, Vrieling K (2014) New insights into domestication of carrot from root transcriptome analyses. BMC Genomics 15:1–15

    CrossRef  Google Scholar 

  • Rosenfeld HJ, Baardseth P, Skrede G (1997) Evaluation of carrot varieties for production of deep fried carrot chips—IV. The influence of growing environment on carrot raw material. Food Res Int 30:611–618

    CrossRef  Google Scholar 

  • Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable Umbelliferae. CABI, New York

    Google Scholar 

  • Ruiz-Sola MA, Arbona V, Gomez-Cadenas A, Rodriguez-Concepcion M, Rodriguez-Villalon A (2014) A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis. PLoS One 9:e90765

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Sola MA, Rodriguez-Concepcion M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Santos CAF, Senalik D, Simon PW (2005) Path analysis suggests phytoene accumulation is the key step limiting the carotenoid pathway in white carrot roots. Genet Mol Biol 28:287–293

    CAS  CrossRef  Google Scholar 

  • Santos C, Simon P (2006) Heritabilities and minimum gene number estimates of carrot carotenoids. Euphytica 151:79–86

    CAS  CrossRef  Google Scholar 

  • Simon PW, Peterson CE, Lindsay RC (1980) Correlations between sensory and objective parameters of carrot flavor. J Agric Food Chem 28:559–562

    CAS  CrossRef  Google Scholar 

  • Simpson K, Quiroz LF, Rodriguez-Concepción M, Stange C (2016) Differential contribution of the first two enzymes of the MEP pathway to the supply of metabolic precursors for carotenoid and chlorophyll biosynthesis in carrot (Daucus carota). Front Plant Sci (in press)

    Google Scholar 

  • Stange C, Fuentes P, Handford M, Pizarro L (2008) Daucus carota as a novel model to evaluate the effect of light on carotenogenic gene expression. Biol Res 41:289–301

    CrossRef  PubMed  Google Scholar 

  • Surles RL, Weng N, Simon PW, Tanumihardjo SA (2004) Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota, L.) of various colors. J Agric Food Chem 52:3417–3421

    CAS  CrossRef  PubMed  Google Scholar 

  • Tanumihardjo SA, Horvitz MA, Dosti MP, Simon PW (2009) Serum alpha- and beta-carotene concentrations qualitatively respond to sustained carrot feeding. Exp Biol Med (Maywood) 234:1280–1286

    CAS  CrossRef  Google Scholar 

  • U.S. Department of Agriculture ARS (2014) USDA national nutrient database for standard reference, Release 27. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/nutrientdata

  • Vaughan J, Geissler C (2009) The new Oxford book of food plants. OUP, Oxford

    Google Scholar 

  • Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4:232–235

    CrossRef  PubMed  Google Scholar 

  • Walter M, Floss D, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232:1–17

    CAS  CrossRef  PubMed  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692

    CAS  CrossRef  PubMed  Google Scholar 

  • Welsch R, Beyer P, Hugueney P, Kleinig H, von Lintig J (2000) Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta 211:846–854

    CAS  CrossRef  PubMed  Google Scholar 

  • Welsch R, Wust F, Bar C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147:367–380

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wright LP, Rohwer JM, Ghirardo A, Hammerbacher A, Ortiz-Alcaide M, Raguschke B et al (2014) Deoxyxylulose 5-Phosphate synthase controls flux through the methylerythritol 4-phosphate pathway in Arabidopsis. Plant Physiol 165(4):1488–1504. doi:10.1104/pp.114.245191

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Xu ZS, Tan HW, Wang F, Hou XL, Xiong AS (2014) CarrotDB: a genomic and transcriptomic database for carrot. Database (Oxford) 2014

    Google Scholar 

  • Yahyaa M, Bar E, Dubey NK, Meir A, Davidovich-Rikanati R, Hirschberg J, Aly R, Tholl D, Simon PW, Tadmor Y, Lewinsohn E, Ibdah M (2013) Formation of norisoprenoid flavor compounds in carrot (Daucus carota L.) roots: characterization of a cyclic-specific carotenoid cleavage dioxygenase 1 gene. J Agric Food Chem 61:12244–12252

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by the Conicyt National Founding Fondecyt 1130245 and CYTED (Ibercarot-112RT0445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Stange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Simpson, K., Cerda, A., Stange, C. (2016). Carotenoid Biosynthesis in Daucus carota . In: Stange, C. (eds) Carotenoids in Nature. Subcellular Biochemistry, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-39126-7_7

Download citation