Skip to main content

Deterministic Treatment of Model Error in Geophysical Data Assimilation

  • Chapter
  • First Online:

Part of the book series: Springer INdAM Series ((SINDAMS,volume 15))

Abstract

This chapter describes a novel approach for the treatment of model error in geophysical data assimilation. In this method, model error is treated as a deterministic process correlated in time. This allows for the derivation of the evolution equations for the relevant moments of the model error statistics required in data assimilation procedures, along with an approximation suitable for application to large numerical models typical of environmental science. In this contribution we first derive the equations for the model error dynamics in the general case, and then for the particular situation of parametric error. We show how this deterministic description of the model error can be incorporated in sequential and variational data assimilation procedures. A numerical comparison with standard methods is given using low-order dynamical systems, prototypes of atmospheric circulation, and a realistic soil model. The deterministic approach proves to be very competitive with only minor additional computational cost. Most importantly, it offers a new way to address the problem of accounting for model error in data assimilation that can easily be implemented in systems of increasing complexity and in the context of modern ensemble-based procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The values of \(\sigma _{w_{g}}\) and \(\sigma _{w_{2}}\) are expressed as soil wetness index SWI = (ww wilt )∕(w fc w wilt ) where w fc is the volumetric field capacity and w wilt is the wilting point.

References

  1. Anderson, J.L., Anderson, S.L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127 (12), 2741–2758 (1999)

    Article  Google Scholar 

  2. Bengtsson, L., Ghil, M., Kallen, E.: Dynamic Meteorology: Data Assimilation Methods. Springer, New York/Heidelberg/Berlin (1981)

    Book  MATH  Google Scholar 

  3. Bennett, A.F.: Inverse Methods in Physical Oceanography. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  4. Carrassi, A., Hamdi, R., Termonia, P., Vannitsem, S.: Short time augmented extended Kalman filter for soil analysis: a feasibility study. Atmos. Sci. Lett. 13, 268–274 (2012)

    Article  Google Scholar 

  5. Carrassi, A., Vannitsem, S.: Accounting for model error in variational data assimilation: a deterministic formulation. Mon. Weather Rev. 138, 3369–3386 (2010)

    Article  Google Scholar 

  6. Carrassi, A., Vannitsem, S.: State and parameter estimation with the extended Kalman filter: an alternative formulation of the model error dynamics. Q. J. R. Meteor. Soc. 137, 435–451 (2011)

    Article  MATH  Google Scholar 

  7. Carrassi, A., Vannitsem, S.: Treatment of the error due to unresolved scales in sequential data assimilation. Int. J. Bifurc. Chaos. 21 (12), 3619–3626 (2011)

    Article  MATH  Google Scholar 

  8. Carrassi, A., Vannitsem, S., Nicolis, C.: Model error and sequential data assimilation: a deterministic formulation. Q. J. R. Meteor. Soc. 134, 1297–1313 (2008)

    Article  Google Scholar 

  9. Carrassi, A., Weber, R., Guemas, V., Doblas-Reyes, F., Asif, M., Volpi, D.: Full-field and anomaly initialization using a low-order climate model: a comparison and proposals for advanced formulations. Nonlinear Proc. Geophys. 21, 521–537 (2014)

    Article  Google Scholar 

  10. Daley, R.: Atmospheric Data Analysis. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  11. Dee, D.P., Da Silva, A.: Data assimilation in the presence of forecast bias. Q. J. R. Meteor. Soc. 117, 269–295 (1998)

    Article  Google Scholar 

  12. Dee, D.P., et al.: The era-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteor. Soc. 137, 553–597 (2011)

    Article  Google Scholar 

  13. Le Dimet, F.X., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A, 97–110 (1986)

    Article  Google Scholar 

  14. Doblas-Reyes, F., García-Serrano, J., Lienert, F., Pintò Biescas, A., Rodrigues, L.R.L.: Seasonal climate predictability and forecasting: status and prospects. WIREs Clim. Change 4, 245–268 (2013)

    Article  Google Scholar 

  15. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, New York (2009)

    Book  MATH  Google Scholar 

  16. Geleyn, J.F.: Interpolation of wind, temperature and humidity values from model levels to the height of measurement. Tellus 40A, 347–351 (1988)

    Article  Google Scholar 

  17. Ghilain, N., Arboleda, A., Gellens-Meulenberghs, F.: Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data. Hydrol. Earth Syst. Sci. 15, 771–786 (2011)

    Article  Google Scholar 

  18. Hamdi, R., Van de Vyver, H., Termonia, P.: New cloud and micro-physics parameterization for use in high-resolution dynamical downscaling: application for summer extreme temperature over Belgium. Int. J. Climatol. 32, 2051–2065 (2012)

    Article  Google Scholar 

  19. Li Hong, L., Kalnay, E.: Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Q. J. R. Meteor. Soc. 533, 523–533 (2009)

    Google Scholar 

  20. Janjić, T., Cohn, S.E.: Treatment of observation error due to unresolved scales in atmospheric data assimilation. Mon. Weather Rev. 134, 2900–2915 (2006)

    Article  Google Scholar 

  21. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic, New York (1970)

    MATH  Google Scholar 

  22. Kalman, R.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  23. Kalnay, E.: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  24. Kondrashov, D., Shprits, Y., Ghil, M., Thorne, R.: Kalman filter technique to estimate relativistic electron lifetimes in the outer radiation belt. J. Geophys. Res. 112, A10227 (2007)

    Article  Google Scholar 

  25. Kondrashov, D., Sun, C., Ghil, M.: Data assimilation for a coupled Ocean-Atmosphere model. Part II: Parameter estimation. Mon. Weather Rev. 136 (12), 5062–5076 (2008)

    Google Scholar 

  26. Leith, C.E.: Predictability of Climate. Nature 276 (11), 352–355 (1978)

    Article  Google Scholar 

  27. Lewis, J.M., Derber, J.C.: The use of adjoint equations to solve a variational adjustment problem with advective constraint. Tellus 37A, 309–322 (1985)

    Article  Google Scholar 

  28. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  29. Lorenz, E.N.: Predictability – a problem partly solved. In: Palmer, T.N. (ed.) Proceedings of ECMWF Seminar on Predictability, vol. I, pp. 1–18. ECMWF, Reading (1996)

    Google Scholar 

  30. Mahfouf, J.-F.: Soil analysis at météo-france. part i: Evaluation and perspectives at local scale. Note de Cent. CNRM/GMME 84, 58 (2007)

    Google Scholar 

  31. Mahfouf, J.-F., Bergaoui, K., Draper, C., Bouyssel, F., Taillefer, F., Taseva, L.: A comparison of two off-line soil analysis schemes for assimilation of screen level observations. J. Geophys. Res. 114, D80105 (2009)

    Article  Google Scholar 

  32. Mitchell, L., Carrassi, A.: Accounting for model error due to unresolved scales within ensemble Kalman filtering. Q. J. R. Meteor. Soc. 141, 1417–1428 (2015)

    Article  Google Scholar 

  33. Nicolis, C.: Dynamics of model error: some generic features. J. Atmos. Sci. 60, 2208–2218 (2003)

    Article  MathSciNet  Google Scholar 

  34. Nicolis, C.: Dynamics of model error: the role of unresolved scales revisited. J. Atmos. Sci. 61 (1996), 1740–1753 (2004)

    Article  MathSciNet  Google Scholar 

  35. Nicolis, C., Perdigao, R., Vannitsem, S.: Dynamics of prediction errors under the combined effect of initial condition and model errors. J. Atmos. Sci. 66, 766–778 (2009)

    Article  Google Scholar 

  36. Noilhan, J., Mahfouf, J.-F.: The ISBA land-surface parameterization scheme. Glob. Planet. Chang. 13, 145–159 (1996)

    Article  Google Scholar 

  37. Orescanin, B., Rajkovic, B., Zupanski, M., Zupanski, D.: Soil model parameter estimation with ensemble data assimilation. Atmos. Sci. Lett. 10, 127–131 (2009)

    Article  Google Scholar 

  38. Raanes, P., Carrassi, A., Bertino, L.: Extending the square root method to account for model noise in the ensemble Kalman filter. Mon. Weather. Rev. 143, 3857–3873 (2015)

    Article  Google Scholar 

  39. Ruiz, J.J., Pulido, M., Miyoshi, T.: Estimating model parameters with ensemble-based data assimilation: parameter covariance treatment. J. Meteorol. Soc. Jpn. 91, 453–469 (2013)

    Article  Google Scholar 

  40. Sasaki, Y.: Some basic formalism in numerical variational analysis. Mon. Weather Rev. 98, 875–883 (1970)

    Article  Google Scholar 

  41. Talagrand, O., Courtier, P.: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: theory. Q. J. R. Meteorol. Soc. 113, 1311–1328 (1987)

    Google Scholar 

  42. Tremolet, Y.: Accounting for an imperfect model in 4D-Var. Q. J. R. Meteor. Soc. 132 (621), 2483–2504 (2006)

    Article  Google Scholar 

  43. Tremolet, Y.: Model error estimation in 4d-var. Q. J. R. Meteor. Soc. 133, 1267–1280 (2007)

    Article  Google Scholar 

  44. Uboldi, F., Kamachi, M.: Time-space weak-constraint data assimilation for nonlinear models. Tellus 52, 412–421 (2000)

    Article  Google Scholar 

  45. Vannitsem, S., Toth, Z.: Short-term dynamics of model errors. J. Atmos. Sci. 59, 2594–2604 (2002)

    Article  MathSciNet  Google Scholar 

  46. Yang, X., Delsole, T.: Using the ensemble Kalman filter to estimate multiplicative model parameters. Tellus 61A, 601–609 (2009)

    Article  Google Scholar 

  47. Weber, R.J.T., Carrassi, A., Doblas-Reyes, F.: Linking the anomaly initialization approach to the mapping paradigm: a proof-of-concept study Mon. Weather Rev. 143, 4695–4713 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Carrassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carrassi, A., Vannitsem, S. (2016). Deterministic Treatment of Model Error in Geophysical Data Assimilation. In: Ancona, F., Cannarsa, P., Jones, C., Portaluri, A. (eds) Mathematical Paradigms of Climate Science. Springer INdAM Series, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-39092-5_9

Download citation

Publish with us

Policies and ethics