Advertisement

Combination Development

  • Annie St-PierreEmail author
  • Maribel Reyes
  • Vincent Duval
Chapter

Abstract

In recent years, the pharmaceutical industry has focused its efforts towards the development of novel combination targeted therapies for the treatment of cancer. In the battle against the most complex and heterogeneous disease, researchers have been increasing their understanding on cell signaling pathways and tumor biology. This knowledge supports the increasing interest in combinatorial approaches to overcome challenges such as drug resistance, or sub-optimal efficacy. The development of combination therapy faces several challenges: characterization of the synergy between the two chemical entities, definition of the appropriate doses and schedule to maximize efficacy without increasing the level of adverse events, which increased significantly its level of complexity. To address these obstacles several tools are made available. In vitro, the number of cell lines validated for pre-clinical testing and the availability of high throughput screening methods has increased significantly. The characterization of cells at a genomic and protein level have improved the predictability of effects in vivo and enabled the identification of synergistic, additive, or antagonistic effects of combination therapies. In vivo, xenograft models are frequently used to optimize combination therapies and understand mechanisms of drug resistance. Moreover, in silico approaches such as multi-scale mathematical models are gaining interest to integrate knowledge on cellular pathways, cellular environment, and tumor growth in order to optimize dosing strategies. The clinical development of combination therapies has prompted the need to reassess how clinical studies are designed in order to identify the right dose and the right schedule of administration for drugs in combination. Several strategies can be used for dose escalation in phase I combination studies but the use of pharmacokinetic properties of individual drugs and the collection of pharmacodynamics endpoints early in development has proven to be essential in optimizing combination therapies across the various phases of clinical development. Finally, an increased collaboration across the pharmaceutical industry is needed for the development of combination therapies for the successful treatment of cancer.

Keywords

Oncology Combination drugs Drug development Combination therapy HIV Hypertension 

References

  1. Abdel-Wahab O, Klimek VM, Gaskell AA, Viale A, Cheng D, Kim E, Rampal R, Bluth M, Harding JJ, Callahan MK, Merghoub T, Berger MF, Solit DB, Rosen N, Levine RL, Chapman PB (2014) Efficacy of intermittent combined RAF and MEK inhibition in a patient with concurrent. Cancer Discov 4:538–545CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adjei AA (2006) What is the right dose? The elusive optimal biologic dose in phase I clinical trials. J Clin Oncol 24:4054–4055CrossRefPubMedGoogle Scholar
  3. Al-Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30:679–692CrossRefPubMedGoogle Scholar
  4. Ashworth A, Bernards R (2010) Using functional genetics to understand breast cancer biology. Cold Spring Harb Perspect Biol 2:a003327CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi Jr. P, de SM, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607Google Scholar
  6. Benson JD, Chen YN, Cornell-Kennon SA, Dorsch M, Kim S, Leszczyniecka M, Sellers WR, Lengauer C (2006) Validating cancer drug targets. Nature 441:451–456CrossRefPubMedGoogle Scholar
  7. Bernards R (2014) Finding effective cancer therapies through loss of function genetic screens. Curr Opin Genet Dev 24:23–29CrossRefPubMedGoogle Scholar
  8. Cai C, Yuan Y, Ji Y (2014) A Bayesian dose-finding design for oncology clinical trials of combinational biological agents. J R Stat Soc Ser C Appl Stat 63:159–173CrossRefPubMedGoogle Scholar
  9. Cancer Treatment Advisor (2015) Cancer Treatment Regimens. Cancer Therapy AdvisorGoogle Scholar

Online Source

  1. Carragher NO, Unciti-Broceta A, Cameron DA (2012) Advancing cancer drug discovery towards more agile development of targeted combination therapies. Future Med Chem 4:87–105CrossRefPubMedGoogle Scholar
  2. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, Basecke J, Stivala F, Donia M, Fagone P, Malaponte G, Mazzarino MC, Nicoletti F, Libra M, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Laidler P, Milella M, Tafuri A, Bonati A, Evangelisti C, Cocco L, Martelli AM, McCubrey JA (2011) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2:135–164CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446CrossRefPubMedGoogle Scholar
  4. Clark A, Ellis M, Erlichman C, Lutzker S, Zwiebel J (2010) Development of rational drug combinations with investigational targeted agents. Oncologist 15:496–499CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cotterill A, Lorand D, Wang J, Jaki T (2015) A practical design for a dual-agent dose-escalation trial that incorporates pharmacokinetic data. Stat Med 34(13):2138–2164CrossRefPubMedGoogle Scholar
  6. Das Thakur M, Salangsang F, Landman AS, Sellers WR, Pryer NK, Levesque MP, Dummer R, McMahon M, Stuart DD (2013) Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494:251–255CrossRefPubMedGoogle Scholar
  7. Das Thakur M, Pryer NK, Singh M (2014) Mouse tumour models to guide drug development and identify resistance mechanisms. J Pathol 232:103–111CrossRefPubMedGoogle Scholar
  8. DeVita VT Jr, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68:8643–8653CrossRefPubMedGoogle Scholar
  9. Drebin JA, Link VC, Stern DF, Weinberg RA, Greene MI (1985) Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 41:697–706CrossRefPubMedGoogle Scholar
  10. Eichelbaum M, Burk O (2001) CYP3A genetics in drug metabolism. Nat Med 7:285–287CrossRefPubMedGoogle Scholar
  11. EMA (2005) Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with impaired hepatic functionGoogle Scholar
  12. Frei E III, Karon M, Levin RH, Freireich EJ, Taylor RJ, Hananian J, Selawry O, Holland JF, Hoogstraten B, Wolman IJ, Abir E, Sawitsky A, Lee S, Mills SD, Burgert EO Jr, Spurr CL, Patterson RB, Ebaugh FG, James GW III, Moon JH (1965) The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood 26:642–656PubMedGoogle Scholar
  13. Hamberg P, Ratain MJ, Lesaffre E, Verweij J (2010) Dose-escalation models for combination phase I trials in oncology. Eur J Cancer 46:2870–2878CrossRefPubMedGoogle Scholar
  14. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–435CrossRefPubMedGoogle Scholar
  15. Hidalgo M (2008) Clinical development of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors: what lessons have we learned? Adv Exp Med Biol 610:128–143CrossRefPubMedGoogle Scholar
  16. Huang X, Biswas S, Oki Y, Issa JP, Berry DA (2007) A parallel phase I/II clinical trial design for combination therapies. Biometrics 63:429–436CrossRefPubMedGoogle Scholar
  17. Kamb A, Wee S, Lengauer C (2007) Why is cancer drug discovery so difficult? Nat Rev Drug Discov 6:115–120CrossRefPubMedGoogle Scholar
  18. Kirouac DC, Onsum MD (2013) Using network biology to bridge pharmacokinetics and pharmacodynamics in oncology. CPT Pharmacometrics Syst Pharmacol 2, e71CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kirouac DC, Du JY, Lahdenranta J, Overland R, Yarar D, Paragas V, Pace E, McDonagh CF, Nielsen UB, Onsum MD (2013) Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors. Sci Signal 6:ra68CrossRefPubMedGoogle Scholar
  20. Klinger B, Sieber A, Fritsche-Guenther R, Witzel F, Berry L, Schumacher D, Yan Y, Durek P, Merchant M, Schafer R, Sers C, Bluthgen N (2013) Network quantification of EGFR signaling unveils potential for targeted combination therapy. Mol Syst Biol 9:673CrossRefPubMedPubMedCentralGoogle Scholar
  21. Le Tourneau C, Lee JJ, Siu LL (2009) Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst 101:708–720CrossRefPubMedPubMedCentralGoogle Scholar
  22. Le CP, Ottmann OG, Giles F, Kim DW, Cortes J, Gattermann N, Apperley JF, Larson RA, Abruzzese E, O’Brien SG, Kuliczkowski K, Hochhaus A, Mahon FX, Saglio G, Gobbi M, Kwong YL, Baccarani M, Hughes T, Martinelli G, Radich JP, Zheng M, Shou Y, Kantarjian H (2008) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 111:1834–1839Google Scholar
  23. Life Science Leader (2014) Combination cancer immunotherapy—a virtual roundtable: Part III. Wayne KobersteinGoogle Scholar
  24. Lord CJ, Ashworth A (2010) Biology-driven cancer drug development: back to the future. BMC Biol 8:38CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mandrekar SJ (2014) Dose-finding trial designs for combination therapies in oncology. J Clin Oncol 32:65–67CrossRefPubMedGoogle Scholar
  26. Marshall JL (2012) Maximum-tolerated dose, optimum biologic dose, or optimum clinical value: dosing determination of cancer therapies. J Clin Oncol 30:2815–2816CrossRefPubMedGoogle Scholar
  27. Mathijssen RH, Sparreboom A, Verweij J (2014) Determining the optimal dose in the development of anticancer agents. Nat Rev Clin Oncol 11:272–281CrossRefPubMedGoogle Scholar
  28. Melas IN, Kretsos K, Alexopoulos LG (2013) Leveraging systems biology approaches in clinical pharmacology. Biopharm Drug Dispos 34:477–488CrossRefPubMedPubMedCentralGoogle Scholar
  29. Menzies AM, Long GV (2014) Dabrafenib and trametinib, alone and in combination for BRAF-mutant metastatic melanoma. Clin Cancer Res 20:2035–2043CrossRefPubMedGoogle Scholar
  30. Moore MJ (1991) Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 20:194–208CrossRefPubMedGoogle Scholar
  31. National Cancer Policy Forum (2011) Facilitating collaborations to develop combination investigational cancer therapies: workshop summaryGoogle Scholar
  32. Panetta JC, Chaplin MAJ, Cameron D (2000) Modelling the effects of paclitaxel and Cisplatin on Breast and Ovarian Cancer. J Theoret Med 3:11–23CrossRefGoogle Scholar
  33. Park SR, Davis M, Doroshow JH, Kummar S (2013) Safety and feasibility of targeted agent combinations in solid tumours. Nat Rev Clin Oncol 10:154–168CrossRefPubMedGoogle Scholar
  34. Perkins G, Yap TA, Pope L, Cassidy AM, Dukes JP, Riisnaes R, Massard C, Cassier PA, Miranda S, Clark J, Denholm KA, Thway K, Gonzalez De CD, Attard G, Molife LR, Kaye SB, Banerji U, de Bono JS (2012) Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers. PLoS One 7:e47020Google Scholar
  35. Petricoin EF III, Bichsel VE, Calvert VS, Espina V, Winters M, Young L, Belluco C, Trock BJ, Lippman M, Fishman DA, Sgroi DC, Munson PJ, Esserman LJ, Liotta LA (2005) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 23:3614–3621CrossRefPubMedGoogle Scholar
  36. Riviere MK, Le TC, Paoletti X, Dubois F, Zohar S (2014) Designs of drug-combination phase I trials in oncology: a systematic review of the literature. Ann Oncol 26(4):669–674CrossRefPubMedGoogle Scholar
  37. Rocchetti M, Simeoni M, Pesenti E, De NG, Poggesi I (2007) Predicting the active doses in humans from animal studies: a novel approach in oncology. Eur J Cancer 43:1862–1868CrossRefPubMedGoogle Scholar
  38. Rosfjord E, Lucas J, Li G, Gerber HP (2014) Advances in patient-derived tumor xenografts: from target identification to predicting clinical response rates in oncology. Biochem Pharmacol 91:135–143CrossRefPubMedGoogle Scholar
  39. Rowinsky EK, Gilbert MR, McGuire WP, Noe DA, Grochow LB, Forastiere AA, Ettinger DS, Lubejko BG, Clark B, Sartorius SE (1991) Sequences of taxol and cisplatin: a phase I and pharmacologic study. J Clin Oncol 9:1692–1703PubMedGoogle Scholar
  40. Ruggeri BA, Camp F, Miknyoczki S (2014) Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol 87:150–161CrossRefPubMedGoogle Scholar
  41. Salphati L, Wong H, Belvin M, Bradford D, Edgar KA, Prior WW, Sampath D, Wallin JJ (2010) Pharmacokinetic-pharmacodynamic modeling of tumor growth inhibition and biomarker modulation by the novel phosphatidylinositol 3-kinase inhibitor GDC-0941. Drug Metab Dispos 38:1436–1442CrossRefPubMedGoogle Scholar
  42. Schenone M, Dancik V, Wagner BK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9:232–240CrossRefPubMedGoogle Scholar
  43. Seghers AC, Wilgenhof S, Lebbe C, Neyns B (2012) Successful rechallenge in two patients with BRAF-V600-mutant melanoma who experienced previous progression during treatment with a selective BRAF inhibitor. Melanoma Res 22:466–472CrossRefPubMedGoogle Scholar
  44. Sharma SV, Haber DA, Settleman J (2010) Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer 10:241–253CrossRefPubMedGoogle Scholar
  45. Simeoni M, Magni P, Cammia C, De NG, Croci V, Pesenti E, Germani M, Poggesi I, Rocchetti M (2004) Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res 64:1094–1101CrossRefPubMedGoogle Scholar
  46. Smith AD, Roda D, Yap TA (2014) Strategies for modern biomarker and drug development in oncology. J Hematol Oncol 7:70CrossRefPubMedPubMedCentralGoogle Scholar
  47. Staton T (2012) FDA approves Roche’s pricey new Herceptin partner, Perjeta. Fierce PharmaGoogle Scholar
  48. Sweeting MJ, Mander AP (2012) Escalation strategies for combination therapy Phase I trials. Pharm Stat 11:258–266CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9:338–350CrossRefPubMedPubMedCentralGoogle Scholar
  50. Terranova N, Germani M, Del BF, Magni P (2013) A predictive pharmacokinetic-pharmacodynamic model of tumor growth kinetics in xenograft mice after administration of anticancer agents given in combination. Cancer Chemother Pharmacol 72:471–482CrossRefPubMedPubMedCentralGoogle Scholar
  51. Thall PF, Millikan RE, Mueller P, Lee SJ (2003) Dose-finding with two agents in Phase I oncology trials. Biometrics 59:487–496CrossRefPubMedGoogle Scholar
  52. The Biomarker Consortium (2015)Google Scholar
  53. Tortora G, Ciardiello F, Gasparini G (2008) Combined targeting of EGFR-dependent and VEGF-dependent pathways: rationale, preclinical studies and clinical applications. Nat Clin Pract Oncol 5:521–530CrossRefPubMedGoogle Scholar
  54. van Moorsel CJ, Kroep JR, Pinedo HM, Veerman G, Voorn DA, Postmus PE, Vermorken JB, van Groeningen CJ, van der Vijgh WJ, Peters GJ (1999) Pharmacokinetic schedule finding study of the combination of gemcitabine and cisplatin in patients with solid tumors. Ann Oncol 10:441–448CrossRefPubMedGoogle Scholar
  55. Vasudev NS, Reynolds AR (2014) Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17:471–494CrossRefPubMedPubMedCentralGoogle Scholar
  56. Venkatakrishnan K, Friberg LE, Ouellet D, Mettetal JT, Stein A, Trocóniz IF, Bruno R, Mehrotra N, Gobburu J, Mould DR (2014) Optimizing oncology therapeutics through quantitative translational and clinical pharmacology: challenges and opportunities. Clin Pharmacol Ther 97(1):37–54CrossRefPubMedGoogle Scholar
  57. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van CE, Wei X, Iglesias J, Renschler MF (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703CrossRefGoogle Scholar
  58. Whittaker SR, Theurillat JP, Van AE, Wagle N, Hsiao J, Cowley GS, Schadendorf D, Root DE, Garraway LA (2013) A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 3:350–362CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wilding JL, Bodmer WF (2014) Cancer cell lines for drug discovery and development. Cancer Res 74:2377–2384CrossRefPubMedGoogle Scholar
  60. Williams SA, Anderson WC, Santaguida MT, Dylla SJ (2013) Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab Invest 93:970–982CrossRefPubMedGoogle Scholar
  61. Wong H, Vernillet L, Peterson A, Ware JA, Lee L, Martini JF, Yu P, Li C, Del RG, Choo EF, Hoeflich KP, Shi Y, Aftab BT, Aoyama R, Lam ST, Belvin M, Prescott J (2012) Bridging the gap between preclinical and clinical studies using pharmacokinetic-pharmacodynamic modeling: an analysis of GDC-0973, a MEK inhibitor. Clin Cancer Res 18:3090–3099CrossRefPubMedGoogle Scholar
  62. Woodcock J, Griffin JP, Behrman RE (2011) Development of novel combination therapies. N Engl J Med 364:985–987CrossRefPubMedGoogle Scholar
  63. Xu S, Li S, Guo Z, Luo J, Ellis MJ, Ma CX (2013) Combined targeting of mTOR and AKT is an effective strategy for basal-like breast cancer in patient-derived xenograft models. Mol Cancer Ther 12:1665–1675CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yan C, Liu D, Li L, Wempe MF, Guin S, Khanna M, Meier J, Hoffman B, Owens C, Wysoczynski CL, Nitz MD, Knabe WE, Ahmed M, Brautigan DL, Paschal BM, Schwartz MA, Jones DN, Ross D, Meroueh SO, Theodorescu D (2014) Discovery and characterization of small molecules that target the GTPase Ral. Nature 515:443–447CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, Ramaswamy S, Futreal PA, Haber DA, Stratton MR, Benes C, McDermott U, Garnett MJ (2013) Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:D955–D961CrossRefPubMedGoogle Scholar
  66. Yap TA, Sandhu SK, Workman P, de Bono JS (2010) Envisioning the future of early anticancer drug development. Nat Rev Cancer 10:514–523CrossRefPubMedGoogle Scholar
  67. Yap TA, Omlin A, de Bono JS (2013) Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol 31:1592–1605CrossRefPubMedGoogle Scholar
  68. Yin G, Yuan Y (2009) A latent contingency table approach to dose finding for combinations of two agents. Biometrics 65:866–875CrossRefPubMedGoogle Scholar
  69. Yin G, Li Y, Ji Y (2006) Bayesian dose-finding in phase I/II clinical trials using toxicity and efficacy odds ratios. Biometrics 62:777–784CrossRefPubMedGoogle Scholar
  70. Yuan Y, Yin G (2008) Sequential continual reassessment method for two-dimensional dose finding. Stat Med 27:5664–5678CrossRefPubMedGoogle Scholar

Generic

  1. EMA (2012a) Guideline on the evaluation of anticancer medicinal products in manGoogle Scholar
  2. EMA (2012b) Guideline on the investigation of drug interactionsGoogle Scholar
  3. EMA (2014) Draft guideline on the evaluation of the pharmacokinetics of medicinal products in patients with decreased renal functionGoogle Scholar
  4. FDA (2003) Pharmacokinetics in patients with impaired hepatic function: study design, data analysis, and impact on dosing and labelingGoogle Scholar
  5. FDA (2005) Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteersGoogle Scholar
  6. FDA (2010a) Draft guidance: pharmacokinetics in patients with impaired renal function—study design, data analysis, and impact on dosing and labelingGoogle Scholar
  7. FDA (2010b) S9 Nonclinical evaluation for anticancer pharmaceuticalsGoogle Scholar
  8. FDA (2013) Co development of two or more new investigational drugs for use in combinationGoogle Scholar
  9. FDA (2014) Trametinib and DabrafenibGoogle Scholar

Serial (Book, Monograph)

  1. NCI (2014) Targeted cancer therapies. National Cancer InstituteGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Novartis Pharma AGBaselSwitzerland

Personalised recommendations