Skip to main content

Hydrophone Arrays

  • Chapter
  • First Online:
Book cover Transducers and Arrays for Underwater Sound

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 2300 Accesses

Abstract

The goal of both passive and active sonar systems is reliable long-range detection and ranging capability, but the basic considerations that influence performance of the two types of sonar are quite different. The receiving array in passive systems such as towed arrays or wide aperture ranging arrays must be able to detect signals with unknown frequency content, and therefore must operate over a frequency band much greater than the band of a typical active system. And they must do so in the presence of interfering noise. Chapter 6 shows that there are many ways to design hydrophones with adequate broad band sensitivity that are small, lightweight, and inexpensive compared to the high power projectors needed for active sonar. But the main problem in passive sonar is control of the interfering noise, especially in ship-mounted arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.H. Schloemer, Technology development of submarine sonar hull arrays. Naval Undersea Warfare Center Division Newport, Technical Digest, September 1999 [Distribution authorized to DOD components only]. Also Presentation at Undersea Defense Technology Conference and Exhibition, Sydney, Australia, February 7 (2000)

    Google Scholar 

  2. I. Dyer, “Ocean Ambient Noise” Encyclopedia of Acoustics, vol. 1 (Wiley, New York, 1997), p. 549

    Book  Google Scholar 

  3. S.-H. Ko, S. Pyo, W. Seong, Structure-Borne and Flow Noise Reductions (Mathematical Modeling) (Seoul National University Press, Seoul, 2001)

    Google Scholar 

  4. D. Ross, Mechanics of Underwater Noise (Peninsula, Los Altos Hills, 1987)

    Google Scholar 

  5. W.A. Strawderman, Wavevector-Frequency Analysis with Applications to Acoustics. U.S. Government Printing Office, undated

    Google Scholar 

  6. V.M. Albers, Underwater Acoustics Handbook (The Pennsylvania State University Press, University Park, 1960)

    Google Scholar 

  7. W.S. Burdic, Underwater Acoustic System Analysis, 2nd edn. (Prentice Hall, Upper Saddle River, 1991)

    Google Scholar 

  8. J.W. Horton, Fundamentals of Sonar, 2nd edn. (U.S. Naval Institute, Annapolis, 1959)

    Google Scholar 

  9. A.A. Michelson, A reciprocal relation in diffraction. Philos. Mag. 9, 506–507 (1905)

    Article  MATH  Google Scholar 

  10. N. Davids, E.G. Thurston, R.E. Meuser, The design of optimum directional acoustic arrays. J. Acoust. Soc. Am. 24, 50–56 (1952)

    Article  ADS  Google Scholar 

  11. R.L. Pritchard, Optimum directivity patterns for linear point arrays. J. Acoust. Soc. Am. 25, 879–891 (1953)

    Article  ADS  Google Scholar 

  12. W. Thompson Jr., Higher powers of pattern functions—a beam pattern synthesis technique. J. Acoust. Soc. Am. 49, 1686–1687 (1971)

    Article  ADS  Google Scholar 

  13. C.L. Dolph, A current distribution of broadside arrays which optimizes the relationship between beam width and side lobe level. Proc. Inst. Radio Engrs. 34, 335–348 (1946)

    Google Scholar 

  14. R.J. Urick, Principles of Underwater Sound, 3rd edn. (Peninsula, Los Altos Hills, 1983)

    Google Scholar 

  15. T.T. Taylor, Design of line-source antennas for narrow beam width and low side lobes. IRE Trans. AP-3, 316 (1955)

    Google Scholar 

  16. O.B. Wilson, An Introduction to the Theory and Design of Sonar Transducers (U.S. Government Printing Office, Washington, DC, 1985)

    Google Scholar 

  17. R.L. Pritchard, Approximate calculation of the directivity index of linear point arrays. J. Acoust. Soc. Am. 25, 1010–1011 (1953)

    Article  ADS  Google Scholar 

  18. R.L. Pritchard, Maximum directivity of a linear point array. J. Acoust. Soc. Am. 26, 1034–1039 (1954)

    Article  ADS  Google Scholar 

  19. G. Maidanik, D.W. Jorgensen, Boundary wave-vector filters for the study of the pressure field in a turbulent boundary layer. J. Acoust. Soc. Am. 42, 494–501 (1967)

    Article  ADS  Google Scholar 

  20. W.K. Blake, D.M. Chase, Wavenumber-frequency spectra of turbulent-boundary-layer pressure measured by microphone arrays. J. Acoust. Soc. Am. 49, 862–877 (1971)

    Article  ADS  Google Scholar 

  21. D.H. Trivett, L.D. Luker, S. Petrie, A.L. VanBuren, J.E. Blue, A planar array for the generation of evanescent waves. J. Acoust. Soc. Am. 87, 2535–2540 (1990)

    Article  ADS  Google Scholar 

  22. C.H. Sherman, S.H. Ko, B.G. Buehler, Measurement of the turbulent boundary layer wave-vector spectrum. J. Acoust. Soc. Am. 88, 386–390 (1990)

    Article  ADS  Google Scholar 

  23. J.S. Bendat, A.G. Piersol, Engineering Applications of Correlation and Spectral Analysis (Wiley, New York, 1993)

    MATH  Google Scholar 

  24. J.L. Butler, C.H. Sherman, Acoustic radiation from partially coherent line sources. J. Acoust. Soc. Am. 47, 1290–1296 (1970)

    Article  ADS  Google Scholar 

  25. D.J. Kewley, D.G. Browning, W.M. Carey, Low-frequency wind-generated ambient noise source levels. J. Acoust. Soc. Am. 88, 1894–1902 (1990)

    Article  ADS  Google Scholar 

  26. G.M. Wenz, Acoustic ambient noise in the ocean: spectra and sources. J. Acoust. Soc. Am. 34, 1936–1956 (1962)

    Article  ADS  Google Scholar 

  27. V.O. Knudsen, R.S. Alford, J.W. Emling, Underwater ambient noise. J. Mar. Res. 7, 410 (1948)

    Google Scholar 

  28. H.W. Marsh, Origin of the Knudsen spectra. J. Acoust. Soc. Am. 35, 409 (1963)

    Article  ADS  Google Scholar 

  29. E.H. Axelrod, B.A. Schoomer, W.A. Von Winkle, Vertical directionality of ambient noise in the deep ocean at a site near Bermuda. J. Acoust. Soc. Am. 37, 77–83 (1965)

    Article  ADS  Google Scholar 

  30. B.F. Cron, B.C. Hassel, F.J. Keltonic, Comparison of theoretical and experimental values of spatial correlation. J. Acoust. Soc. Am. 37, 523–529 (1965). U.S. Navy Underwater Sound Lab. Rept. 596, 1963

    Article  ADS  Google Scholar 

  31. B.F. Cron, C.H. Sherman, Spatial-correlation functions for various noise models. J. Acoust. Soc. Am. 34, 1732–1736 (1962). Addendum: J. Acoust. Soc. Am., 38, 885 (1965)

    Article  ADS  Google Scholar 

  32. J.E. Barger, “Sonar Systems”, Encyclopedia of Acoustics, vol. 1, Section 3.1 (Wiley, New York, 1997), p. 559

    Google Scholar 

  33. R.L. Pritchard, Mutual acoustic impedance between radiators in an infinite rigid plane. J. Acoust. Soc. Am. 32, 730–737 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  34. M.C. Junger, D. Feit, Sound, Structures and Their Interaction, 2nd edn. (MIT Press, Cambridge, MA, 1986)

    MATH  Google Scholar 

  35. G.M. Corcos, The structure of the turbulent pressure field in boundary layer flows. J. Fluid Mech. 18(3), 353–378 (1964)

    Article  ADS  MATH  Google Scholar 

  36. D.M. Chase, Modeling the wave-vector frequency spectrum of turbulent boundary wall pressure. J. Sound Vib. 70, 29–68 (1980)

    Article  ADS  MATH  Google Scholar 

  37. G.C. Lauchle, Calculation of turbulent boundary layer wall pressure spectra. J Acoust. Soc. Am. 98, 2226–2234 (1995)

    Article  ADS  Google Scholar 

  38. G.C. Lauchle, Noise generated by axisymmetric turbulent boundary-layer flow. J. Acoust. Soc. Am. 61, 694–703 (1977)

    Article  ADS  Google Scholar 

  39. N.C. Martin, P. Leehey, Low wavenumber wall pressure measurements using a rectangular membrane as a spatial filter. J. Sound Vib. 52(1) (1997)

    Google Scholar 

  40. J.J. Faran Jr., R. Hills Jr., Wide-band directivity of receiving arrays. J. Acoust. Soc. Am. 57, 1300–1308 (1975)

    Article  ADS  Google Scholar 

  41. S.H. Ko, H.H. Schloemer, Signal pressure received by a hydrophone placed on a plate backed by a compliant baffle. J. Acoust. Soc. Am. 89, 559–564 (1991)

    Article  ADS  Google Scholar 

  42. M.A. Gonzalez, Analysis of a composite compliant baffle. J. Acoust. Soc. Am. 64, 1509–1513 (1978)

    Article  ADS  MATH  Google Scholar 

  43. S.H. Ko, C.H. Sherman, Flexural wave baffling. J. Acoust. Soc. Am. 66, 566–570 (1979)

    Article  ADS  Google Scholar 

  44. R.P. Radlinski, R.S. Janus, Scattering from two and three gratings of densely packed compliant tubes. J. Acoust. Soc. Am. 80, 1803–1809 (1986)

    Article  ADS  Google Scholar 

  45. S.H. Ko, H.H. Schloemer, Calculations of turbulent boundary layer pressure fluctuations transmitted into a viscoelastic layer. J. Acoust. Soc. Am. 85(4) (1989)

    Google Scholar 

  46. S.H. Ko, H.H. Schloemer, Flow noise reduction techniques for a planar array of hydrophones. J. Acoust. Soc. Am. 92, 3409–3424 (1992)

    Article  ADS  Google Scholar 

  47. W. Thompson Jr., R.E. Montgomery, Approximate evaluation of the spectral density integral for a large planar array of rectangular sensors excited by turbulent flow. J. Acoust. Soc. Am. 93, 3201–3207 (1993)

    Article  ADS  Google Scholar 

  48. M.J. Berliner, J.F. Lindberg (eds.), Acoustic Particle Velocity Sensors: Design, Performance and Applications, AIP Conference Proceedings 368, Mystic CT, September (1995)

    Google Scholar 

  49. Proceedings of the Workshop on Directional Acoustic Sensors, Newport, RI, 17–18 April (2001) (Available on CD)

    Google Scholar 

  50. E.Y. Lo, M.C. Junger, Signal-to noise enhancement by underwater intensity measurements. J. Acoust. Soc. Am. 82, 1450–1454 (1987)

    Article  ADS  Google Scholar 

  51. D. Huang, R.C. Elswick, Acoustic pressure-vector sensor array. J. Acoust. Soc. Am. 115, 2620 (2004) (Abstract)

    Article  ADS  Google Scholar 

  52. B.A. Cray, A.H. Nuttall, A Comparison of Vector-Sensing and Scalar-Sensing Linear Arrays. Report No. 10632, Naval Undersea Warfare Center, Newport, RI, January 27 (1997)

    Google Scholar 

  53. R. Kneipfer, Spatial Auto and Cross-correlation Functions for Tri-axial Velocity Sensor Outputs in a Narrowband, 3 Dimensional, Isotropic Pressure Field. Naval Undersea Warfare Center, Newport, RI, Memo. 5214/87, September (1985)

    Google Scholar 

  54. M. Hawkes, A. Nehorai, Acoustic vector sensor correlations in ambient noise. IEEE J. Ocean. Eng. 26, 337–347 (2001)

    Article  Google Scholar 

  55. H.W. Marsh, Correlation in Wave Fields. U.S. Navy Underwater Sound Laboratory Quart. Rept., 31 March (1950), pp. 63–68

    Google Scholar 

  56. B.A. Cray, in Directional Acoustic Receivers: Signal and Noise Characteristics. Workshop on Directional Acoustic Sensors, Newport, RI, 17–18 April (2001)

    Google Scholar 

  57. S.H. Ko, Performance of velocity sensor for flexural wave reduction, in M.J. Berliner, J.F. Lindberg (eds.), Acoustic Particle Velocity Sensors: Design, Performance and Applications, AIP Conference Proceedings 368 (AIP Press, Woodbury, 1996)

    Google Scholar 

  58. R.F. Keltie, Signal response of elastically coated plates. J. Acoust. Soc. Am. 103, 1855–1863 (1998)

    Article  ADS  Google Scholar 

  59. B.A. Cray, R.A. Christman, Acoustic and vibration performance evaluations of a velocity sensing hull array, in Acoustic Particle Velocity Sensors: Design, Performance and Applications, AIP Conference Proceedings 368, ed. by M.J. Berliner, J.F. Lindberg (AIP Press, Woodbury, 1996)

    Google Scholar 

  60. N.C. Martin, R.N. Dees, D.A. Sachs, in Baffle Characteristics: Effects of Sensor Size and Mass, AIP Conference Proceedings 368, ed. by M.J. Berliner, J.F. Lindberg (AIP Press, Woodbury, 1996)

    Google Scholar 

  61. J.J. Caspall, M.D. Gray, G.W. Caille, J. Jarzynski, P.H. Rogers, G.S. McCall II, in Laser Vibrometer Analysis of Sensor Loading Effects in Underwater Measurements of Compliant Surface Motion, AIP Conference Proceedings 368, ed. by M.J. Berliner, J.F. Lindberg (AIP Press, Woodbury, 1996)

    Google Scholar 

  62. M. Traweek, J. Polcari, D. Trivett, Noise audit model for acoustic vector sensor arrays on an ocean glider. J. Acoust. Soc. Am. 116(2), 2650 (2004)

    Article  ADS  Google Scholar 

  63. B.M. Abraham, M.J. Berliner, in Directional Hydrophones in Towed Systems, Workshop on Directional Acoustic Sensors, Newport, RI, 17–18 April (2001)

    Google Scholar 

  64. G.C. Lauchle, J.F. McEachern, A.R. Jones, J.A. McConnell, in Flow-Induced Noise on Pressure Gradient Hydrophones, AIP Conference Proceedings 368, ed. by M.J. Berliner, J.F. Lindberg (AIP Press, Woodbury, 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Butler, J.L., Sherman, C.H. (2016). Hydrophone Arrays. In: Transducers and Arrays for Underwater Sound. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-39044-4_8

Download citation

Publish with us

Policies and ethics