Skip to main content

Projector Arrays

  • Chapter
  • First Online:
Transducers and Arrays for Underwater Sound

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 2279 Accesses

Abstract

Naval applications are the main motivation for the development of large, innovative sonar systems. Therefore, the development of large acoustic arrays is closely related to new ship construction, and especially to new submarines since they depend so strongly on acoustics [1, 2]. The main function of active sonar on submarines is searching for surface ships and other submarines, but avoidance of mines and sea mounts, as well as underwater communications, are also very important. Active search requires large projector arrays operating in the 2–10 kHz region for medium range performance, while obstacle avoidance uses smaller, higher frequency arrays. All submarine applications require transducers capable of withstanding hundreds of pounds per square inch of hydrostatic pressure without significant change in performance. On surface ships active sonar is used mainly for searching for submarines, with transducers similar to those in submarine arrays except for the hydrostatic pressure requirement. Extremely long range active sonar requires lower frequency and higher power (see Fig. 1.9), which leads to many problems in transducer and array design as well as possible environmental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.H. Schloemer, Technology Development of Submarine Sonar Hull Arrays, Naval Undersea Warfare Center Division Newport, Technical Digest, September 1999 [Distribution authorized to DOD components only] Also Presentation at Undersea Defense Technology Conference and Exhibition, Sydney, Australia, 7 February 2000

    Google Scholar 

  2. T.G. Bell, Probing the Ocean for Submarines, Naval Sea Systems Command, Undersea Warfare Center, Division Newport, 28 March 2003 [Distribution authorized to DOD and US DOD contractors only]

    Google Scholar 

  3. R.J. Urick, Principles of Underwater Sound, 3rd edn. (Peninsula, Los Altos Hills, 1983)

    Google Scholar 

  4. J.W. Horton, Fundamentals of Sonar, 2nd edn. (U.S. Naval Institute, Annapolis, 1959)

    Google Scholar 

  5. W.O. Pennell, M.H. Hebb, H.A. Brooks et al., Directivity Patterns of Sound Sources, NDRC C4 – sr287-089, Harvard Underwater Sound laboratory, April 29, 1942; Reference in Chapter 5 of NDRC, Div 6, Vol. 13, 1946

    Google Scholar 

  6. W.S. Burdic, Underwater Acoustic System Analysis, 2nd edn. (Prentice Hall, Englewood Cliffs, 1991)

    Google Scholar 

  7. W. Thompson Jr., Directivity of a uniform-strength, continuous circular-arc source phased to the spatial position of its diameter. J. Acoust. Soc. Am. 105, 3078–3082 (1999)

    Article  ADS  Google Scholar 

  8. A. Zielinski, L. Wu, A novel array of ring radiators. IEEE J. Ocean. Eng. 16, 136–141 (1991)

    Article  Google Scholar 

  9. D. Stansfield, Underwater Electroacoustic Transducers (Bath University Press, Bath, 1990). Fig. 6.11

    Google Scholar 

  10. Y.L. Chow, On grating plateaux of nonuniformly spaced arrays. IEEE Trans. Antennas Propag. 13(2), 208–215 (1965)

    Article  ADS  Google Scholar 

  11. A. Ishimaru, Theory of unequally spaced arrays. IRE Trans. Antennas. Propag. 10(6), 691–702 (1962)

    Article  ADS  Google Scholar 

  12. F.J. Pompei, S.C. Wooh, Phased array element shapes for suppressing grating lobes. J. Acoust. Soc. Am. 111, 2040–2048 (2002)

    Article  ADS  Google Scholar 

  13. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 4th edn. (Wiley, New York, 2000)

    Google Scholar 

  14. J.L. Butler, A.L. Butler, A Directional Power Wheel Cylindrical Array, ONR 321 Maritime Sensing (MS) Program Rev. (NUWC, Newport, 18 August 2005)

    Google Scholar 

  15. J.L. Butler, C.H. Sherman, Acoustic radiation from partially coherent line sources. J. Acoust. Soc. Am. 47, 1290–1296 (1970)

    Google Scholar 

  16. C.H. Sherman, Analysis of acoustic interactions in transducer arrays. IEEE Trans. Sonics Ultrason. SU-13, 9–15 (1966)

    Article  Google Scholar 

  17. D.T. Porter, NUSC Train of Computer Programs for Transmitting Array Prediction, Naval Underwater Systems Center Technical Document 8159 (26 January 1988)

    Google Scholar 

  18. TRN, Transducer Design and Array Analysis Program, NUWC, Newport, RI. Developed by M. Simon, K. Farnham with array analysis module based on the program ARRAY, by J.L. Butler (Image Acoustics, Cohasset)

    Google Scholar 

  19. D.L. Carson, Diagnosis and cure of erratic velocity distributions in sonar projector arrays. J. Acoust. Soc. Am. 34, 1191–1196 (1962)

    Article  ADS  Google Scholar 

  20. R.S. Woollett, Sonar Transducer Fundamentals (Naval Underwater Systems Center, Newport, n.d.), p. 147

    Google Scholar 

  21. A.L. Butler, J.L. Butler, Ultra Wideband Active Acoustic Conformal Array Module, ONR 321MS Program Review (Naval Undersea Warfare Center, Newport, 17–20 May 2004)

    Google Scholar 

  22. J. Zimmer, Submarine Hull Mounted Conformal Array Employing BBPP Technology, ONR 321MS Program Review (Naval Undersea Warfare Center, Newport, 17–20 May 2004)

    Google Scholar 

  23. R.L. Pritchard, Mutual acoustic impedance between radiators in an infinite rigid plane. J. Acoust. Soc Am. 32, 730–737 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  24. I. Wolff, L. Malter, Sound radiation from a system of vibrating circular diaphragms. Phys. Rev. 33, 1061 (1929)

    Article  ADS  Google Scholar 

  25. S.J. Klapman, Interaction impedance of a system of circular pistons. J. Acoust. Soc. Am. 11, 289–295 (1940)

    Article  ADS  Google Scholar 

  26. H. Stenzel, Leitfaden zur Berechnung von Schallvorgangen (Springer, Berlin, 1939)

    Book  Google Scholar 

  27. R.L. Pritchard, Tech. Memo. No. 21, Appendix C, Acoustics Research Laboratory, Harvard Univ., NR-014-903 (15 January 1951)

    Google Scholar 

  28. C.J. Bouwkamp, A contribution to the theory of acoustic radiation. Phillips Research Reports 1, 262–277 (1946)

    MathSciNet  Google Scholar 

  29. W. Thompson Jr., The computation of self and mutual radiation impedances for annular and elliptical pistons using Bouwkamp’s integral. J. Sound Vib. 17, 221–233 (1971)

    Article  ADS  Google Scholar 

  30. E.M. Arase, Mutual radiation impedance of square and rectangular pistons in a rigid infinite baffle. J. Acoust. Soc. Am. 36, 1521–1525 (1964)

    Article  ADS  Google Scholar 

  31. J.L. Butler, Self and Mutual Impedance for a Square Piston in a Rigid Baffle (Image Acoustics, Contract N66604-92-M-BW19, Cohasset, 20 March 1992)

    Google Scholar 

  32. W.J. Toulis, Radiation load on arrays of small pistons. J. Acoust. Soc. Am. 29, 346–348 (1957)

    Article  ADS  Google Scholar 

  33. C.H. Sherman, Mutual radiation impedance of sources on a sphere. J. Acoust. Soc. Am. 31, 947–952 (1959)

    Article  ADS  Google Scholar 

  34. J.E. Greenspon, C.H. Sherman, Mutual radiation impedance and near field pressure for pistons on a cylinder. J. Acoust. Soc. Am. 36, 149–153 (1964)

    Article  ADS  Google Scholar 

  35. D.H. Robey, On the radiation impedance of an array of finite cylinders. J. Acoust. Soc. Am. 27, 706–710 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  36. F.B. Stumpf, F.J. Lukman, Radiation resistance of magnetostrictive-stack transducer in presence of second transducer at air-water surface. J. Acoust. Soc. Am. 32, 1420–1422 (1960)

    Article  ADS  Google Scholar 

  37. W.J. Toulis, Mutual coupling with dipoles in arrays. J. Acoust. Soc. Am. 37, 1062–1063 (1963)

    Article  ADS  Google Scholar 

  38. F.B. Stumpf, Interaction radiation resistance for a line array of two and three magnetostrictive-stack transducers at an air-water surface. J. Acoust. Soc. Am. 36, 174–176 (1964)

    Article  ADS  Google Scholar 

  39. C.H. Sherman, Theoretical model for mutual radiation resistance of small transducers at an air-water surface. J. Acoust. Soc. Am. 37, 532–533 (1965)

    Article  ADS  Google Scholar 

  40. D.T. Porter, Self and mutual radiation impedance and beam patterns for flexural disks in a rigid plane. J. Acoust. Soc. Am. 36, 1154–1161 (1964)

    Article  ADS  Google Scholar 

  41. K.C. Chan, Mutual acoustic impedance between flexible disks of different sizes in an infinite rigid plane. J. Acoust. Soc. Am. 42, 1060–1063 (1967)

    Article  ADS  Google Scholar 

  42. C.H. Sherman, General Transducer Array Analysis, Parke Mathematical Laboratory Report No. 6, Contract N00014-67-C-0424 (February 1970)

    Google Scholar 

  43. P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw Hill, New York, 1968)

    Google Scholar 

  44. W. Thompson Jr., Acoustic coupling between two finite-sized spherical sources. J. Acoust. Soc. Am. 62, 8–11 (1977)

    Article  ADS  Google Scholar 

  45. W. Thompson Jr., Radiation from a spherical acoustic source near a scattering sphere. J. Acoust. Soc. Am. 60, 781–787 (1976)

    Article  ADS  Google Scholar 

  46. R.T. Beyer, Nonlinear Acoustics (US Government Printing Office, Washington, DC, 1975)

    Google Scholar 

  47. P.J. Westervelt, Parametric acoustic array. J. Acoust. Soc. Am. 35, 535–537 (1963)

    Article  ADS  Google Scholar 

  48. M.B. Moffett, R.H. Mellen, Model for parametric acoustic sources. J. Acoust. Soc. Am. 61, 325–337 (1977)

    Article  ADS  Google Scholar 

  49. H.O. Berktay, D.J. Leahy, Farfield performance of parametric transmitters. J. Acoust. Soc. Am. 55, 539–546 (1974)

    Article  ADS  Google Scholar 

  50. M.B. Moffett, R.H. Mellen, On parametric source aperture factors. J. Acoust. Soc. Am. 60, 581–583 (1976)

    Article  ADS  Google Scholar 

  51. M.B. Moffett, R.H. Mellen, Nearfield characteristics of parametric acoustic sources. J. Acoust. Soc. Am. 69, 404–409 (1981)

    Article  ADS  Google Scholar 

  52. M.B. Moffett, R.H. Mellen, Effective lengths of parametric acoustic sources, J. Acoust. Soc. Am. 70, 1424–1426 (1981). See also “Erratum”, 71, 1039 (1982)

    Google Scholar 

  53. M.B. Moffett, W.L. Konrad, Nonlinear Sources and Receivers, Encyclopedia of Acoustics, vol. 1 (Wiley, New York, 1997), pp. 607–617

    Book  Google Scholar 

  54. M.B. Moffett, H.C. Robinson, User’s Manual for the CONVOL5 Computer Program, NUWC-NPT Technical Document 11,577 (25 October 2004)

    Google Scholar 

  55. P.H. Rogers, A.L. Van Buren, A.O. Williams Jr., J.M. Barber, Parametric detection of low-frequency acoustic waves in the nearfield of an arbitrary directional pump transducer. J. Acoust. Soc. Am. 56, 528–534 (1974)

    Article  Google Scholar 

  56. M.B. Moffett, W.L. Konrad, J.C. Lockwood, A saturated parametric acoustic receiver. J. Acoust. Soc. Am. 66, 1842–1847 (1979)

    Article  ADS  Google Scholar 

  57. J.L. Butler, A.L. Butler, M.J. Ciufo, Doubly steered array of modal transducers. J. Acoust. Soc. Am. 132, 1985(A) (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Butler, J.L., Sherman, C.H. (2016). Projector Arrays. In: Transducers and Arrays for Underwater Sound. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-39044-4_7

Download citation

Publish with us

Policies and ethics