Advertisement

Summary and Outlook

  • Amy Laura ParkerEmail author
Chapter
  • 616 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Within this thesis I use sub-optimal InSAR data to investigate long-term subsidence of volcanoes in the southern Cascades. I approach this problem from two perspectives: firstly in improving the application of InSAR data in the Cascades Volcanic Arc using multi temporal analysis and large-scale atmospheric models; and secondly, in developing a modelling approach to interpret long-term volcanic subsidence related to cooling magmatic intrusions. In this summary, I review the outcomes of each thesis chapter, identifying the main findings and highlighting where further advances could be made. I then finish by discussing the future role of InSAR as a tool in volcanology.

Keywords

Ground Deformation InSAR Data Persistent Scatterer Temporal Decorrelation North American Regional Reanalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bekaert, D. P. S., Hooper, A., & Wright, T. J. (2015). A spatially-variable power-law tropospheric correction technique for InSAR data. Journal of Geophysical Research, 120(2), 1345–1356.Google Scholar
  2. Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375–2383.CrossRefGoogle Scholar
  3. Biggs, J., Anthony, E. Y., & Ebinger, C. J. (2009). Multiple inflation and deflation events at Kenyan volcanoes. East African Rift. Geology, 37(11), 979–982.Google Scholar
  4. Biggs, J., Bastow, I. D., Keir, D., & Lewi, E. (2011). Pulses of deformation reveal frequently recurring shallow magmatic activity beneath the Main Ethiopian Rift. Geochemistry, Geophysics, Geosystems, 12(9)Google Scholar
  5. Biggs, J., Ebmeier, S. K., Aspinall, W. P., Lu, Z., Pritchard, M. E., Sparks, R. S. J., et al. (2014). Global link between deformation and volcanic eruption quantified by satellite imagery. Nature Communications 5.Google Scholar
  6. Cashman, K., & Biggs, J. (2014). Common processes at unique volcanoes - a volcanological conundrum. Frontiers in Earth Science, 2, 28.CrossRefGoogle Scholar
  7. Crider, J. G., Hill, J. K., & Williams-Jones, G. (2008). Thirty-year gravity change at Mount Baker Volcano, Washington, USA: Extracting the signal from under the ice. Geophysical Research Letters, 35(20)Google Scholar
  8. Crider, J. G., Frank, D., Malone, S. D., Poland, M. P., Werner, C., & Caplan-Auerbach, J. (2011). Magma at depth: a retrospective analysis of the 1975 unrest at Mount Baker, Washington. USA. Bulletin of Volcanology, 73(2), 175–189.CrossRefGoogle Scholar
  9. de Zeeuw-van, D. E., Rymer, H. Sigmundsson, F., & Sturkell, E. (2005). Net gravity decrease at Askja volcano, Iceland: constraints on processes responsible for continuous caldera deflation, 1988–2003. Journal of Volcanology and Geothermal Research, 139(3), 227–239.Google Scholar
  10. Doin, M.-P., Lasserre, C., Peltzer, G., Cavalie, O., & Doubre, C. (2009). Correction of stratified atmospheric delays in SAR interferometry: Validation with global atmospheric models. Journal of Applied Geophysics, 69, 35–50.CrossRefGoogle Scholar
  11. Ebmeier, S. K., Biggs, J., Mather, T. A., & Amelung, F. (2013a). Applicability of InSAR to tropical volcanoes: insights from Central America. Geological Society, London, Special Publications, 380(1), 15–37.CrossRefGoogle Scholar
  12. Ebmeier, S. K., Biggs, J., Mather, T. A., & Amelung, F. (2013b). On the lack of InSAR observations of magmatic deformation at Central American volcanoes. Journal of Geophysical Research, 118(5), 2571–2585.Google Scholar
  13. Ewert, J. W., Guffanti, M., & Murray, T. L. (2005). An assessment of volcanic threat and monitoring capabilities in the United States: framework for a National Volcano Early Warning System NVEWS. U.S. Geological Survey Open File Report  (2005-1164).Google Scholar
  14. Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16), L16302–L16312Google Scholar
  15. Hooper, A., & Zebker, H. A. (2007). Phase unwrapping in three dimensions with application to InSAR time series. Journal of the Optical Society of America, 24(9), 2737–2747.CrossRefGoogle Scholar
  16. Ingebritsen, S. E., Mariner, R. H., & Sherrod, D. R. (1994). Hydrothermal systems of the Cascade Range, north-central Oregon. No. 1044-L.Google Scholar
  17. Ingebritsen, S., Sherrod, D., & Mariner, R. (1989). Heat flow and hydrothermal circulation in the Cascade Range, north-central Oregon. Science, 243(4897), 1458–1462.CrossRefGoogle Scholar
  18. Jolivet, R., Grandin, R., Lasserre, C., & M.-P., D., Peltzer, G.,. (2011). Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophysical Research Letters, 38(L17311),Google Scholar
  19. Jolivet, R., Agram, P. S., Lin, N. Y., Simons, M., Doin, M.-P., Peltzer, G., et al. (2014). Improving InSAR geodesy using global atmospheric models. Journal of Geophysical Research, 119(3), 2324–2341.Google Scholar
  20. Lisowski, M., Dzurisin, D., Delinger, R. P., & Iwatsubo, E. Y. (2008). Analysis of GPS-Measured Deformation Associated with the 2004–2006 Dome-Building Eruption of Mount St. Helens, Washington. U.S. Geological Survey Professional Paper, 1750, 301–333.Google Scholar
  21. Lu, Z., & Dzurisin, D. (2014). InSAR Imaging of Aleutian Volcanoes: Monitoring a Volcanic Arc from Space. Chichester: Springer-Praxis.CrossRefGoogle Scholar
  22. Moran, S. C., Newhall, C., & Roman, D. C. (2011). Failed magmatic eruptions: late-stage cessation of magma ascent. Bulletin of Volcanology, 73(2), 115–122.CrossRefGoogle Scholar
  23. Parker, A. L., Biggs, J., & Lu, Z. (2014). Investigating long-term subsidence at Medicine Lake Volcano, CA, using multi temporal InSAR. Geophys. J. Int., 199(2), 844–859.CrossRefGoogle Scholar
  24. Parker, A. L., Biggs, J., Walters, R. J., Ebmeier, S. K., Wright, T. J., Teanby, N. A., et al. (2015). Systematic assessment of atmospheric uncertainties for InSAR data at volcanic arcs using large-scale atmospheric models: Application to the Cascade volcanoes, United States. Remote Sensing of Environment, 170, 102–114.CrossRefGoogle Scholar
  25. Phillipson, G., Sobradelo, R., & Gottsmann, J. (2013). Global volcanic unrest in the 21st century: an analysis of the first decade. Journal of Volcanology and Geothermal Research, 264, 183–196.CrossRefGoogle Scholar
  26. Pinel, V., Hooper, A., De la Cruz-Reyna, S., Reyes-Davila, G., Doin, M.-P., & Bascou, P. (2011). The challenging retrieval of the displacement field from InSAR data for andesitic stratovolcanoes: Case study of Popocatepetl and Colima Volcano, Mexico. Journal of Volcanology and Geothermal Research, 200(1), 49–61.CrossRefGoogle Scholar
  27. Pinel, V., Poland, M. P., & Hooper, A. (2014). Volcanology: Lessons learned from Synthetic Aperture Radar imagery. Journal of Volcanology and Geothermal Research, 289, 81–113.CrossRefGoogle Scholar
  28. Poland, M. P., Bürgmann, R., Dzurisin, D., Lisowski, M., Masterlark, T., Owen, S., et al. (2006). Constraints on the mechanism of long-term, steady subsidence at Medicine Lake volcano, northern California, from GPS, levelling and InSAR. Journal of Volcanology and Geothermal Research, 150(1), 55–78.CrossRefGoogle Scholar
  29. Poland, M. P., & Lu, Z. (2008). Radar Interferometry Observations of Surface Displacements During Pre- and Coeruptive Periods at Mount St. Helens, Washington, 1992–2005. U. S. Geological Survey Professional Paper, 1750, 361–382.Google Scholar
  30. Pritchard, M. E. (2003). Recent crustal deformation in west- central south america,. Ph.D. thesis, Calif. Inst. Technol., Pasadena. (Available at http://etd.caltech.edu/etd/available/ etd-06022003-105512/).
  31. Rymer, H., & Williams-Jones, G. (2000). Volcanic eruption prediction: Magma chamber physics from gravity and deformation measurements. Geophysical Research Letters, 27(16), 2389–2392.CrossRefGoogle Scholar
  32. Sherrod, D. R., Scott, W. E., & Stauffer, P. H. E., (2008). A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004-2006. U.S. Geological Survey Professional Paper (p. 856) (1750)Google Scholar
  33. Sigmundsson, F., Hreinsdóttir, S., Hooper, A., Árnadóttir, T., Pedersen, R., Roberts, M. J., et al. (2010). Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature, 468(7322), 426–430.CrossRefGoogle Scholar
  34. Spaans, K., & Hooper, A. J. (2014). Improving volcano monitoring through rapid, automatic InSAR processing. abs.]: Eos (American Geophysical Union Transactions), Fall Meeting Supplement, abs. G31A-0403.Google Scholar
  35. Sparks, R. S. J., Biggs, J., & Neuberg, J. W. (2012). Monitoring Volcanoes. Science, 335(6074), 1310–1311.CrossRefGoogle Scholar
  36. Walters, R. J., Elliott, J. R., Li, Z., & Parsons, B. (2013). Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmosphere-corrected InSAR. Journal of Geophysical Research, 118(7), 3674–3690.Google Scholar
  37. Werner, C., Evans, W. C., Poland, M., Tucker, D. S., & Doukas, M. P. (2009). Long-term changes in quiescent degassing at Mount Baker Volcano, Washington, USA; Evidence for a stalled intrusion in 1975 and connection to a deep magma source. Journal of Volcanology and Geothermal Research, 186(3), 379–386.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin UniversityPerthAustralia

Personalised recommendations