Advertisement

Constraining Mechanisms of Volcanic Subsidence at Lassen Volcanic Center, CA, Using InSAR

  • Amy Laura ParkerEmail author
Chapter
  • 621 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Lassen Volcanic Center, southern Cascades, has subsided in recent decades, but the onset, temporal evolution, and cause of subsidence remain unconstrained. Here we use multiple sets of InSAR data, each corrected using the North American Regional Reanalysis atmospheric model, to determine the temporal and spatial characteristics of deformation between 2004 and 2010. ENVISAT data shows that the rate of subsidence at LaVC has decreased over time from 13 ± 2.7 mm/yr between 2004 and 2007 to 8 ± 1.6 mm/yr between 2007 and 2010. Time-series analysis shows that this may be due to either a decrease in the rate of subsurface volume change or an increase in source depth. Comparing these observations to past geodetic studies suggests that the onset of deformation was in the early 1990s. Combining multiple tracks of InSAR data, we find that the ratio of horizontal to vertical displacements is high, and geophysical inversions suggest that subsidence is driven by a point source located at \(\sim \)9 km depth. This source geometry, and the temporal evolution of deformation, contrasts to steady subsidence observed at nearby Medicine Lake Volcano since the 1950s. We evaluate possible causes of subsidence in light of hydrothermal and seismic activity at LaVC, and suggest that deformation is driven by changes in the distribution of magmatic/hydrothermal fluids and/or magma cooling, in addition to tectonic extension. Lassen Volcanic Center was one of >10 volcanic/geothermal centers to experience triggered seismicity after the 1992 M\(_w\)7.3 Landers earthquake, but further constraints are required to assess whether the earthquake had a role in the onset of recent subsidence.

Keywords

Hydrothermal System Ground Deformation Source Depth Tectonic Extension Prolate Ellipsoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amelung, F., & Bell, J. (2003). Interferometric synthetic aperture radar observations of the 1994 Double Spring Flat, Nevada, earthquake (M5.9): Main shock accompanied by triggered slip on a conjugate fault. Journal of Geophysical Research, 108(B9).Google Scholar
  2. Bagnardi, M., Amelung, F., & Poland, M. P. (2013). A new model for the growth of basaltic shields based on deformation of Fernandina volcano, Galápagos Islands. Earth and Planetary Science Letters, 377, 358–366.CrossRefGoogle Scholar
  3. Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., & De Natale, G. (2006). Evidence for fluid migration as the source of deformation at Campi Flegrei caldera, Italy. Geophysical Research Letters, 33(L01307).Google Scholar
  4. Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375–2383.CrossRefGoogle Scholar
  5. Biggs, J., Wright, T., Lu, Z., & Parsons, P. (2007). Multi-interferogram method for measuring inter seismic deformation: Denali Fault, Alaska. Geophysical Journal International, 170, 1165–1179.CrossRefGoogle Scholar
  6. Biggs, J., Anthony, E. Y., & Ebinger, C. J. (2009a). Multiple inflation and deflation events at Kenyan volcanoes, East African Rift. Geology, 37(11), 979–982.Google Scholar
  7. Biggs, J., Robinson, D. P., & Dixon, T. H. (2009b). The 2007 Pisco, Peru, earthquake (M8.0): Seismology and geodesy. Geophysical Journal International, 176, 657–669.Google Scholar
  8. Biggs, J., Lu, Z., Fournier, T., & Freymueller, J. T. (2010). Magma flux at Okmok Volcano, Alaska, from a joint inversion of continuous GPS, campaign GPS and interferometric synthetic aperture radar. Journal of Geophysical Research, 115(B12401).Google Scholar
  9. Biggs, J., Ebmeier, S. K., Aspinall, W. P., Lu, Z., Pritchard, M. E., Sparks, R. S. J., & Mather, T. A. (2014). Global link between deformation and volcanic eruption quantified by satellite imagery. Nature Communications, 5, 3471.Google Scholar
  10. Brace, W. F. (1972). Pore pressure in geophysics. In H. C. Heard, I. Y. Borg, N. L. Carter, C. B. Raleigh (Eds.), Flow and fracture of rocks, Geophysical monograph (Vol. 16, pp. 265–273).Google Scholar
  11. Chiodini, G., Vandemeulebrouck, J., Caliro, S., D’Auria, L., De Martino, P., Mangiacapra, A., et al. (2015). Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth and Planetary Science Letters, 414, 58–67.Google Scholar
  12. Clynne, M. A. (1985). Quaternary volcanism in the southernmost cascade range, california. In M. Guffanti & L. J. P. Muffler (Eds.), Proceedings of the Workshop on Geothermal Resources of the Cascade Range: U.S. Geological Survey Open-File Report 85521, p. 2430.Google Scholar
  13. Clynne, M. A., & Muffler, L. J. P. (2010). Geologic map of lassen volcanic national park and vicinity, California. U.S. Geological Survey Scientific Investigations Map I2899, scale 1:50,000, 110 p.Google Scholar
  14. Clynne, M. A., Robinson, J. E., Nathenson, M., Muffler, L. J. P. (2012). Volcano hazards assessment for the lassen region, Northern California. U.S. Geological Survey Scientific Investigations Report 2012-5176-A, 56 p.Google Scholar
  15. Clynne, M. A. (1999). A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. Journal of Petrology, 40(1), 105–132.CrossRefGoogle Scholar
  16. de Zeeuw-van Dalfsen, E., Rymer, H., Sturkell, E., Pedersen, R., Hooper, A., Sigmundsson, F., et al. (2013). Geodetic data shed light on ongoing caldera subsidence at Askja, Iceland. Bulletin of Volcanology, 75(5), 1–13.CrossRefGoogle Scholar
  17. de Zeeuz-van Dalfsen, E., Pedersen, R., Hooper, A., & Sigmundsson, F. (2012). Subsidence of Askja caldera 2000–2009: Modelling of deformation processes at an extensional plate boundary constrained by time series InSAR analysis. Journal of Volcanology and Geothermal Research, 213, 72–82.CrossRefGoogle Scholar
  18. Donnelly-Nolan, J. M., Grove, T. L., Lanphere, M. A., & Champion, D. E. (2008). Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades. Journal of Volcanology and Geothermal Research, 117, 313.Google Scholar
  19. Dragoni, M., & Magnanensi, C. (1989). Displacement and stress produced by a pressurized, spherical magma chamber, surrounded by a viscoelastic shell. Physics of the Earth and Planetary Interiors, 56(3), 316–328.CrossRefGoogle Scholar
  20. Dzurisin, D. (1999). Results of repeated leveling surveys at Newberry Volcano, Oregon, and near Lassen Peak Volcano, California. Bulletin of Volcanology, 61(1–2), 83–91.CrossRefGoogle Scholar
  21. Dzurisin, D. (2007). Volcano deformation: Geodetic monitoring techniques. Chichester: Springer-Praxis.Google Scholar
  22. Dzurisin, D., Donnelly-Nolan, J. M., Evans, J. R., & Walter, S. R. (1991). Crustal subsidence, seismicity, and structure near Medicine Lake volcano, California. Journal of Geophysical Research, 96(B10), 16319–16333.CrossRefGoogle Scholar
  23. Dzurisin, D., Poland, M. P., & Bürgmann, R. (2002). Steady subsidence of Medicine Lake Volcano, Northern California, revealed by repeated levelling surveys. Journal of Geophysical Research, 107(B12), ECV 8-1.Google Scholar
  24. Fialko, Y., Khazan, Y., & Simons, M. (2001a). Deformation due to a pressurised horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophysical Journal International, 146(1), 181–190.Google Scholar
  25. Fialko, Y., Simons, M., & Agnew, D. (2001b). The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7. 1 Hector Mine earthquake, California, from space geodetic observations. Geophysical Research Letters, 28(16), 3063–3066.Google Scholar
  26. Fournier, R. O. (2007). Hydrothermal systems and volcano geochemistry (pp. 323–341). Chichester: Springer-Praxis.Google Scholar
  27. Goldstein, R., Zebker, H., & Werner, C. (1988). Satellite radar interferometry: Two dimensional phase unwrapping. Radio Science, 23(4), 713–720.CrossRefGoogle Scholar
  28. Goldstein, R., & Werner, C. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21), 4035–4038.CrossRefGoogle Scholar
  29. Gourmelen, N., Amelung, F., & Lanari, R. (2010). Interferometric synthetic aperture radar-GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone. Journal of Geophysical Research, 115(B9).Google Scholar
  30. Guffanti, M., & Weaver, C. S. (1988). Distribution of late Cenozoic volcanic vents in the Cascade Range: Volcanic arc segmentation and regional tectonic considerations. Journal of Geophysical Research, 93(B6), 6513–6529.CrossRefGoogle Scholar
  31. Guffanti, M., Clynne, M. A., Smith, J. G., Muffler, L. J. P., & Bullen, T. D. (1990). Late Cenozoic volcanism, subduction, and extension in the Lassen region of California, southern Cascade Range. Journal of Geophysical Research, 95(B12), 19453–19464.CrossRefGoogle Scholar
  32. Hamling, I. J., Wright, T. J., Calais, E., Lewi, E., & Fukahata, Y. (2014). InSAR observations of post-rifting deformation around the Dabbahu rift segment, Afar, Ethiopia. Geophysical Journal International, 197(1), 33–49.CrossRefGoogle Scholar
  33. Hanssen, R. F. (2001). Radar interferometry: Data interpretation and analysis. Norwell: Kluwer Academic.CrossRefGoogle Scholar
  34. Hildreth, W. (2007). Quaternary magmatism in the Cascades - geological perspectives. U.S. Geological Survey Professional Paper (1744).Google Scholar
  35. Hill, D. P., Reasenberg, P. A., Michael, A., Arabaz, W. J., Beroza, G., Brumbaugh, D., et al. (1993). Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake. Science, 260(5114), 1617–1623.CrossRefGoogle Scholar
  36. Hill, D. P., Johnston, M. J. S., Langbein, J. O., & Bilham, R. (1995). Response of Long Valley caldera to the Mw = 7.3 Landers, California, earthquake. Journal of Geophysical Research, 100(B7), 12985–13005.CrossRefGoogle Scholar
  37. Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research, 112(B7).Google Scholar
  38. Humphrey, J., & McLaren, M. (1995). Seismicity along the boundary between the modoc plateau, southern cascade mountains, and northern sierra nevada. In W. D. Page (Ed.), Quaternary Geology Along the Boundary Between the Modoc Plateau, Southern Cascade Mountains and Northern Sierra Nevada, Appendix A (27 pp.). 1995 Pacific Cell Field Trip: Friends of the Pleistocene.Google Scholar
  39. Janik, C. J., & McLaren, M. K. (2010). Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system. Journal of Volcanology and Geothermal Research, 189(3), 257–277.CrossRefGoogle Scholar
  40. Johnston, M. J. S., Hill, D. P., Linde, A. T., Langbein, J., & Bilham, R. (1995). Transient deformation during triggered seismicity from the 28 June 1992 Mw = 7.3 Landers earthquake at Long Valley volcanic caldera, California. Bulletin of the Seismological Society of America, 85(3), 787–795.Google Scholar
  41. Jolivet, R., Grandin, R., Lasserre, C., & M.-P., D., Peltzer, G. (2011). Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophysical Research Letters, 38(L17311).Google Scholar
  42. Jónsson, S., Zebker, H., Cervelli, P., Segall, P., Garbeil, H., Mouginis-Mark, P., et al. (1999). A shallow-dipping dike fed the 1995 flank eruption at Fernandina volcano, Galapagos, observed by satellite radar interferometry. Geophysical Research Letters, 26(8), 1077–1080.CrossRefGoogle Scholar
  43. Jónsson, S., Zebker, H., Segall, P., & Amelung, F. (2002). Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bulletin of the Seismological Society of America, 92(4), 1377–1389.CrossRefGoogle Scholar
  44. Klein, F. W. (1979). Earthquakes in Lassen Volcanic National Park, California. Bulletin of the Seismological Society of America, 69(3), 867–875.Google Scholar
  45. Klemetti, E. W., & Clynne, M. A. (2014). Localized rejuvenation of a crystal mush recorded in Zircon temporal and compositional variation at the Lassen Volcanic Center, Northern California. PloS one, 9(12), e113157.CrossRefGoogle Scholar
  46. Linde, A. T., Sacks, I. S., Johnston, M. J. S., Hillt, D. P., & Bilham, R. G. (1994). Increased pressure from rising bubbles as a mechanism for remotely triggered seismicity. Nature, 371(6496), 408–410.CrossRefGoogle Scholar
  47. Lu, Z., Power, J. A., McConnell, V. S., Wicks, C., & Dzurisin, D. (2002). Preeruptive inflation and surface interferometric coherence characteristics revealed by satellite radar interferometry at Makushin Volcano, Alaska: 1993–2000. Journal of Geophysical Research, 107(B11), ECV 1-1–ECV 1-13.Google Scholar
  48. Lundgren, P., Usai, S., Sansosti, E., Lanari, R., Tesauro, M., Fornaro, G., et al. (2001). Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera. Journal of Geophysical Research, 106(B9), 19355–19366.CrossRefGoogle Scholar
  49. Mann, D., & Freymueller, J. (2003). Volcanic and tectonic deformation on Unimak Island in the Aleutian Arc, Alaska. Journal of Geophysical Research, 108(B2), 2108.Google Scholar
  50. Mastin, L., Lisowski, M., Roeloffs, E., & Beeler, N. (2009). Improved constraints on the estimated size and volatile content of the Mount St. Helens magma system from the 2004–2008 history of dome growth and deformation. Geophysical Research Letters, 36(L20304).Google Scholar
  51. McLaren, M. K., & Janik, C. J. (1996). Microearthquake clusters and the Lassen hydrothermal system, northern California. Eos, Transactions American Geophysical Union, 77(F513).Google Scholar
  52. Mogi, K. (1958). Relations between eruptions of various volcanoes and the deformations of the ground surfaces around them. Bulletin of the Earthquake Research Institute of the University of Tokyo, 36, 99–134.Google Scholar
  53. Norris, R. D., Meagher, K. L., & Weaver, C. S. (1997). The 1936, 1945–1947, and 1950 earthquake sequences near Lassen Peak, California. Journal of Geophysical Research, 102(B1), 449–457.CrossRefGoogle Scholar
  54. Norton, D., & Knight, J. (1977). Transport phenomena in hydrothermal systems: cooling plutons. American Journal of Science, 277, 937–981.Google Scholar
  55. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  56. Parker, A. L., Biggs, J., & Lu, Z. (2014). Investigating long-term subsidence at Medicine Lake Volcano, CA, using multi temporal InSAR. Geophysical Journal International, 199(2), 844–859.CrossRefGoogle Scholar
  57. Parker, A. L., Biggs, J., Walters, R. J., Ebmeier, S. K., Wright, T. J., Teanby, N. A., et al. (2015). Systematic assessment of atmospheric uncertainties for InSAR data at volcanic arcs using large-scale atmospheric models: Application to the Cascade volcanoes, United States. Remote Sensing of Environment, 170, 102–114.CrossRefGoogle Scholar
  58. Parks, M. M., Biggs, J., Mather, T. A., Pyle, D. M., Amelung, F., Monsalve, M. L., et al. (2011). Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (2006–2009). Journal of Volcanology and Geothermal Research, 202(3), 228–240.CrossRefGoogle Scholar
  59. Parks, M. M., Moore, J., Papanikolaou, X., Biggs, J., Mather, T. A., Pyle, D. M., et al. (2015). From quiescence to unrest-20 years of satellite geodetic measurements at Santorini volcano, Greece. Journal of Geophysical Research, 120(2), 1309–1328.Google Scholar
  60. Paulson, K. M., & Ingebritsen, S. E. (1991). Sodium and chloride data from selected streams in the Lassen area, north-central California, and their relation to thermal-fluid discharge from the Lassen hydrothermal system. U.S. Geological Survey Water- Resources Investigations Report 90-4201, 29 pp.Google Scholar
  61. Pearse, J., & Fialko, Y. (2010). Mechanics of active magmatic intraplating in the Rio Grande Rift near Socorro, New Mexico. Journal of Geophysical Research, 115(B7).Google Scholar
  62. Pinel, V., Poland, M. P., & Hooper, A. (2014). Volcanology: Lessons learned from synthetic aperture radar imagery. Journal of Volcanology and Geothermal Research, 289, 81–113.CrossRefGoogle Scholar
  63. Pitt, A. M., Hill, D. P., Walter, S. W., & Johnson, M. J. S. (2002). Midcrustal, long-period earthquakes beneath northern california volcanic areas. Seismological Research Letters, 73(2), 144–152.CrossRefGoogle Scholar
  64. Poland, M., Bawden, G., Lisowski, M., & Dzurisin, D. (2004). Newly discovered subsidence at Lassen Peak, southern Cascade Range, California, from InSAR and GPS. [abs.]: Eos (American Geophysical Union Transactions) v. 85, Fall Meeting Supplement, abs. G51A-0068.Google Scholar
  65. Poland, M. P., Bürgmann, R., Dzurisin, D., Lisowski, M., Masterlark, T., Owen, S., et al. (2006). Constraints on the mechanism of long-term, steady subsidence at Medicine Lake volcano, northern California, from GPS, levelling and InSAR. Journal of Volcanology and Geothermal Research, 150(1), 55–78.CrossRefGoogle Scholar
  66. Pritchard, M. E., Jay, J. A., Aron, F., Henderson, S. T., & Lara, L. E. (2013). Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake. Nature Geoscience, 6(8), 632–636.CrossRefGoogle Scholar
  67. Pyle, D. M., Mather, T. A., & Biggs, J. (2013). Remote sensing of volcanoes and volcanic processes: integrating observation and modelling-introduction. Geological Society, London, Special Publications, 380(1), 1–13.CrossRefGoogle Scholar
  68. Reverso, T., Vandemeulebrouck, J., Jouanne, F., Pinel, V., Villemin, T., Sturkell, E., et al. (2014). A two-magma chamber model as a source of deformation at Grímsvötn Volcano, Iceland. Journal of Geophysical Research, 119(6), 4666–4683.Google Scholar
  69. Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., et al. (2000). Synthetic Aperture Radar Interferometry. Proceedings of the IEEE, 88(3), 333–382.CrossRefGoogle Scholar
  70. Rosen, P., Hensley, S., Peltzer, G., & Simons, M. (2004). Updated repeat orbit interferometry package released. EOS, Transactions AGU, 85(5), 47.Google Scholar
  71. Samsonov, S., & d’Oreye, N. (2012). Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province. Geophysical Journal International, 191(3), 1095–1108.Google Scholar
  72. Segall, P. (2010). Earthquake and volcano deformation. Princeton: Princeton University Press.CrossRefGoogle Scholar
  73. Sorey, M. L., & Colvard, E. M. (1994). Measurements of heat and mass flow from thermal areas in Lassen Volcanic National Park, California, 1984 - 1993. U.S. Geological Survey Water-Resources Investigations Report 94-4180-A, 35 pp.Google Scholar
  74. Sorey, M. L., Colvard, E. M., & Ingebritsen, S. E. (1994). Measurements of thermal-water discharge outside Lassen Volcanic National Park, California, 1983-94. U.S. Geological Survey Water-Resources Investigations Report 94-4180-B, 45 pp.Google Scholar
  75. Takada, Y., & Fukushima, Y. (2013). Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan. Nature Geoscience, 6(8), 637–641.CrossRefGoogle Scholar
  76. Turrin, B. D., Christiansen, R. L., Clynne, M. A., Champion, D. E., Gerstel, W. J., Muffler, L. J. P., et al. (1998). Age of Lassen Peak, California, and implications for the ages of late Pleistocene glaciations in the southern Cascade Range. Geological Society of America Bulletin, 110(7), 931–945.CrossRefGoogle Scholar
  77. Walter, S., Rojas, V., & Kollman, A. (1984). Seismicity of the Lassen Peak area, California. Geothermal Resources Council Transactions, 8, 523–527.Google Scholar
  78. Walters, R. J., Elliott, J. R., Li, Z., & Parsons, B. (2013). Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmosphere-corrected InSAR. Journal of Geophysical Research, 118(7), 3674–3690.Google Scholar
  79. Wang, H., Wright, T. J., & Biggs, J. (2009). Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophysical Research Letters, 36(3).Google Scholar
  80. Wells, R. E., Weaver, C. S., & Blakely, R. J. (1998). Fore-arc migration in Cascadia and its neotectonic significance. Geology, 26(8), 759–762.CrossRefGoogle Scholar
  81. Wright, T., Lu, Z., & Wicks, C. (2004a). Constraining the slip distribution and fault geometry of the Mw 7.9, 3 November 2002, Denali fault earthquake with interferometric synthetic aperture radar and global positioning system data. Bulletin of the Seismological Society of America, 94(6B), S175–S189.Google Scholar
  82. Wright, T. J., Parsons, B. E., & Lu, Z. (2004b). Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters, 31(1).Google Scholar
  83. Yang, X.-M., Davis, P. M., & Dieterich, J. H. (1988). Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. Journal of Geophysical Research, 93(B5), 4249–4257.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin UniversityPerthAustralia

Personalised recommendations