Time Constraints on Magma Intrusionfrom Thermal Models of Long-Termsubsidence: Medicine Lake Volcano, CA

  • Amy Laura ParkerEmail author
Part of the Springer Theses book series (Springer Theses)


Magma intrusion plays a fundamental role in the eruptive cycle. The geodetic response to intrusion is thought to persist over years - decades as magma cools and crystallises, reducing in volume. However, past thermal modelling approaches do not explain ground deformation over these time-scales. Here we combine an existing thermal model with simple geodetic and petrological constraints to show that subsidence resulting from cooling and crystallising magma intrusions (volume < 3 km\(^3\)) may persist over decadal time-scales. We find that the rate and time-scale of subsidence is dependent upon the magma composition, the intrusion geometry, and the thermal state of the surrounding country rock. The early stages of volume change are most dependent upon cooling and crystallisation at the intrusion contact, which is a function of surface area and country rock temperature. Changes in the rate of volume change over time are slower for sills of lower aspect ratio (thicker) and correspond to changes in the crystallising assemblage. We apply this modelling approach to long-term, steady subsidence of Medicine Lake Volcano, CA, using realistic petrological and geometrical inputs. Comparing the results to the geodetic record, we identify a suite of best-fitting models with initial volumes of 1–2.5 km\(^3\) that reproduce >65 years of subsidence measured at the volcano. These results suggest that magma intrusion has occurred on the order of hundreds of years before present, more recently than the time of the last eruption \(\sim \)1 ka, and that subsidence may continue for decades. Long-term subsidence is observed at numerous volcanic centres and, through this modelling approach, can be used to provide insight into crustal magma fluxes and the timing of magma intrusion.


Country Rock Geothermal Gradient Ground Deformation Magma Body Magma Intrusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Annen, C. (2009). From plutons to magma chambers: Thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth and Planetary Science Letters, 284, 409–416.CrossRefGoogle Scholar
  2. Annen, C. (2011). Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism-volcanism relationships. Tectonophysics, 500(1), 3–10.CrossRefGoogle Scholar
  3. Annen, C., & Sparks, R. S. J. (2002). Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth and Planetary Science Letters, 203(3), 937–955.CrossRefGoogle Scholar
  4. Annen, C., Lénat, J.-F., & Provost, A. (2001). The long-term growth of volcanic edifices: numerical modelling of the role of dyke intrusion and lava-flow emplacement. Journal of Volcanology and Geothermal Research, 105(4), 263–289.CrossRefGoogle Scholar
  5. Annen, C., Pichavant, M., Bachmann, O., & Burgisser, A. (2008). Conditions for the growth of a long-lived shallow crustal magma chamber below Mount Pelee volcano (Martinique, Lesser Antilles Arc). Journal of Geophysical Research, 113(B07209).Google Scholar
  6. Annen, C., Blundy, J. D., Leuthold, J., & Sparks, R. S. J. (2015). Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism. Lithos, 230, 206–221.CrossRefGoogle Scholar
  7. Bargar, K. E. (2001). Fluid-lncluion Studies of Hydrothermal Minerals from Geothermal Drill Holes at Medicine Lake Volcano, Northern California. California Geology, 13.Google Scholar
  8. Baumgartner, L. A., Michel, J., Putlitz, B., Leuthold, J., Muüntener, O., Robyr, M., et al. (2007). The Torres del Paine Igneous Complex and its Contact Aureole. International Geological Conference on the Southern Hemisphere.Google Scholar
  9. Biggs, J., Bastow, I. D., Keir, D., & Lewi, E. (2011). Pulses of deformation reveal frequently recurring shallow magmatic activity beneath the Main Ethiopian Rift. Geochemistry, Geophysics, Geosystems, 12(9).Google Scholar
  10. Blackwell, D. D., Bowen, R. G., Hull, D. A., Riccio, J., & Steele, J. L. (1982). Heat flow, arc volcanism, and subduction in northern Oregon. Journal of Geophysical Research, 87(B10), 8735–8754.CrossRefGoogle Scholar
  11. Bohrson, W. A., & Spera, F. J. (2001). Energy-constrained open-system magmatic processes II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. Journal of Petrology, 42(5), 1019–1041.CrossRefGoogle Scholar
  12. Bonafede, M., Dragoni, M., & Quareni, F. (1986). Displacement and stress fields produced by a centre of dilation and by a pressure source in a viscoelastic half-space: Application to the study of ground deformation and seismic activity at Campi Flegrei, Italy. Geophysical Journal International, 87(2), 455–485.CrossRefGoogle Scholar
  13. Burnham, C. W. (1979). The importance of volatile constituents (pp. 439–482). Princeton, NJ: Princeton University Press.Google Scholar
  14. Caricchi, L., Biggs, J., Annen, C., & Ebmeier, S. (2014). The influence of cooling, crystallisation and re-melting on the interpretation of geodetic signals in volcanic systems. Earth and Planetary Science Letters, 388, 166–174.CrossRefGoogle Scholar
  15. Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids. London, UK: Oxford University Press.Google Scholar
  16. Coleman, D. S., Gray, W., & Glazner, A. F. (2004). Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology, 32(5), 433–436.CrossRefGoogle Scholar
  17. Costa, F., Scaillet, B., & Pichavant, M. (2004). Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite from Volcán San Pedro (36 S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. Journal of Petrology, 45(4), 855–881.CrossRefGoogle Scholar
  18. Crisp, J. A. (1984). Rates of magma emplacement and volcanic output. Journal of Volcanology and Geothermal Research, 20(3), 177–211.CrossRefGoogle Scholar
  19. Cruden, A. R., & McCaffrey, K. J. W. (2002). Different scaling laws for sills, laccoliths and plutons: Mechanical thresholds on roof lifting and floor depression (pp. 15–17). Wissenschaftliche Mitteilung Instute für Geologie Technische Universität Bergakademie Freiberg, Freiberg, Germany.Google Scholar
  20. de Saint-Blanquat, M., Habert, G., Horsman, E., Morgan, S. S., Tikoff, B., Launeau, P., et al. (2006). Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: The Black Mesa pluton, Henry Mountains, Utah. Tectonophysics, 428(1), 1–31.CrossRefGoogle Scholar
  21. Del Negro, C., Currenti, G., & Scandura, D. (2009). Temperature-dependent viscoelastic modeling of ground deformation: Application to Etna volcano during the 1993–1997 inflation period. Physics of the Earth and Planetary Interiors, 172(3), 299–309.CrossRefGoogle Scholar
  22. Delaney, P. T. (1988). Fortran 77 programs for conductive cooling of dikes with temperature-dependent thermal properties and heat of crystallization. Computers & Geosciences, 14(2), 181–212.CrossRefGoogle Scholar
  23. Donnelly-Nolan, J. M., Champion, D. E., Miller, C. D., Grove, T. L., & Trimble, D. A. (1990). Post- 11,000-year volcanism at Medicine Lake Volcano, Cascade Range, Northern California. Journal of Geophysical Research, 95(B12), 19693–19704.CrossRefGoogle Scholar
  24. Donnelly-Nolan, J. M., Nathenson, M., Champion, D. E., Ramsey, D. W., Lowenstern, J. B., Ewert, J. W. (2007). Volcano hazards assessment for medicine Lake Volcano, Northern California. U.S. Geological Survey Scientific Invesitgations Report (2007-5174-A).Google Scholar
  25. Donnelly-Nolan, J. M., Grove, T. L., Lanphere, M. A., Champion, & D. E. (2008). Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades. Journal of Volcanology and Geothermal Research, 117.Google Scholar
  26. Dragoni, M., & Magnanensi, C. (1989). Displacement and stress produced by a pressurized, spherical magma chamber, surrounded by a viscoelastic shell. Physics of the Earth and Planetary Interiors, 56(3), 316–328.CrossRefGoogle Scholar
  27. Dzurisin, D. (2007). Volcano deformation: Geodetic monitoring techniques. Chichester, UK: Springer-Praxis.Google Scholar
  28. Dzurisin, D., Donnelly-Nolan, J. M., Evans, J. R., & Walter, S. R. (1991). Crustal subsidence, seismicity, and structure near Medicine Lake volcano, California. Journal of Geophysical Research, 96(B10), 16319–16333.CrossRefGoogle Scholar
  29. Dzurisin, D., Poland, M. P., & Bürgmann, R. (2002). Steady subsidence of Medicine Lake Volcano, Northern California, revealed by repeated levelling surveys. Journal of Geophysical Research, 107(B12), 2372.CrossRefGoogle Scholar
  30. Evans, J. R., & Zucca, J. J. (1998). Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake Volcano, Northern California Cascade Range. Journal of Geophysical Research, 93(B12), 15016–15036.CrossRefGoogle Scholar
  31. Fialko, Y., Khazan, Y., & Simons, M. (2001a). Deformation due to a pressurised horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophysical Journal International, 146(1), 181–190.CrossRefGoogle Scholar
  32. Finn, C., & Williams, D. L. (1982). Gravity evidence for a shallow intrusion under Medicine Lake Volcano, California. Geology, 10(10), 503–507.CrossRefGoogle Scholar
  33. Francis, P. W., & Hawkesworth, C. J. (1994). Late Cenozoic rates of magmatic activity in the Central Andes and their relationships to continental crust formation and thickening. Journal of the Geological Society, 151(5), 845–854.CrossRefGoogle Scholar
  34. Fuis, G. S., Zucca, J. J., Mooney, W. D., & Milkereit, B. (1987). A geological interpretation of seismic refraction results in north-eastern California. Bulletin of the Geological Society of America, 98(1), 53–65.CrossRefGoogle Scholar
  35. Galland, O., Cobbold, P. R., de Bremond dÕArs, J., & Hallot, E. (2007). Rise and emplacement of magma during horizontal shortening of the brittle crust: Insights from experimental modeling. Journal of Geophysical Research, 112(B6), 0.CrossRefGoogle Scholar
  36. Girona, T., Costa, F., Newhall, C., & Taisne, B. (2014). On depressurization of volcanic magma reservoirs by passive degassing. Journal of Geophysical Research, 119(12), 8667–8687.Google Scholar
  37. Green, D. H. (1973). Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth and Planetary Science Letters, 19(1), 37–53.CrossRefGoogle Scholar
  38. Gregg, P. M., De Silva, S. L., Grosfils, E. B., & Parmigiani, J. P. (2012). Catastrophic caldera-forming eruptions: Thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. Journal of Volcanology and Geothermal Research, 241, 1–12.CrossRefGoogle Scholar
  39. Grove, L. T., Donnelly-Nolan, J. M., & Housh, T. (1997). Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake Volcano, N. California. Contributions to Mineralogy Petrology, 127, 205–223.CrossRefGoogle Scholar
  40. Gudmundsson, A. (2011). Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics, 500(1), 50–64.CrossRefGoogle Scholar
  41. Habert, G., & De Saint-Blanquat, M. (2004). Rate of construction of the Black Mesa bysmalith, Henry Mountains, Utah. Geological society (Vol. 234(1), pp. 163–173). London: Special Publications.Google Scholar
  42. Hickey, J., Gottsmann, J., & Potro, R. (2013). The large-scale surface uplift in the Altiplano-Puna region of Bolivia: A parametric study of source characteristics and crustal rheology using finite element analysis. Geochemistry, Geophysics, Geosystems, 14(3), 540–555.CrossRefGoogle Scholar
  43. Hodge, D. S. (1974). Thermal model for origin of granitic batholiths. Nature, 251, 297–299.CrossRefGoogle Scholar
  44. Hodge, B. E., & Crider, J. G. (2010). Investigating mechanisms of edifice deflation 1981–2007, at Mount Baker volcano, Washington, United States. Journal of Geophysical Research, 105, 25671–25684.Google Scholar
  45. Holloway, J. R., & Burnham, C. W. (1972). Melting relations of basalt with equilibrium water pressure less than total pressure. Journal of Petrology, 13(1), 1–29.CrossRefGoogle Scholar
  46. Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research, 112(B7).Google Scholar
  47. Hulen, J. B., & Lutz, S. J. (1999). Altered volcanic rocks as hydrologic seals on the geothermal system of Medicine Lake volcano, California. Geothermal Resource Council Bulletin, 28, 217–222.Google Scholar
  48. Huppert, H. E., & Sparks, R. S. J. (1988). The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology, 29(3), 599–624.CrossRefGoogle Scholar
  49. Ingebritsen, S. E., Mariner, R. H., & Sherrod, D. R. (1994). Hydrothermal systems of the Cascade Range, north-central Oregon. 1044-L.Google Scholar
  50. Ingebritsen, S., Sherrod, D., & Mariner, R. (1989). Heat flow and hydrothermal circulation in the Cascade Range, north-central Oregon. Science, 243(4897), 1458–1462.CrossRefGoogle Scholar
  51. Iovenetti, J., & Hill, D. (1997). Baseline hydrogeology evaluation report for Telephone Flat geothermal project, Medicine Lake, California: Emeryville, California. Weiss Associates, Report prepared for CalEnergy Corporation.Google Scholar
  52. Jellinek, A. M., & DePaolo, D. J. (2003). A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bulletin of Volcanology, 65(5), 363–381.CrossRefGoogle Scholar
  53. Kavanagh, J. L., & Pavier, M. J. (2014). Rock interface strength influences fluid-filled fracture propagation pathways in the crust. Journal of Structural Geology, 63, 68–75.CrossRefGoogle Scholar
  54. Kavanagh, J. L., Menand, T., & Sparks, R. S. J. (2006). An experimental investigation of sill formation and propagation in layered elastic media. Earth and Planetary Science Letters, 245(3), 799–813.CrossRefGoogle Scholar
  55. Kwoun, O., Lu, Z., Neal, C., & Wicks, C. (2006). Quiescent deformation of the Aniakchak Caldera, Alaska, mapped by InSAR. Geology, 34(1), 5–8.CrossRefGoogle Scholar
  56. Lange, R. A. (1994). The effect of H\(_{2}\)O, CO\(_{2}\) and F on the density and viscosity of silicate melts. Volatiles in Magmas. Reviews in Mineralogy, 30, 331–369.Google Scholar
  57. Leuthold, J., Müntener, O., Baumgartner, L. P., Putlitz, B., Ovtcharova, M., & Schaltegger, U. (2012). Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth and Planetary Science Letters, 325, 85–92.CrossRefGoogle Scholar
  58. Lowenstern, J. B., Donnelly-Nolan, J., Wooden, J. L., & Charlier, B. L. A. (2003). Volcanism, Plutonism and Hydrothermal Alteration at Medicine Lake Volcano, California. In Proceedings, Twenty-Eighth Workshop on Geothermal Reservoir Engineering (p. 8). Stanford, California: Stanford University.Google Scholar
  59. Lu, Z., & Dzurisin, D. (2014). InSAR imaging of Aleutian volcanoes: Monitoring a volcanic arc from space. Chichester, UK: Springer-Praxis.CrossRefGoogle Scholar
  60. Mann, D., & Freymueller, J. (2003). Volcanic and tectonic deformation on Unimak Island in the Aleutian Arc, Alaska. Journal of Geophysical Research, 108(B2), 2108.CrossRefGoogle Scholar
  61. Masterlark, T. (2007). Magma intrusion and deformation predictions: Sensitivities to the Mogi assumptions. Journal of Geophysical Research, 112(B6).Google Scholar
  62. Masterlark, T., Haney, M., Dickinson, H., Fournier, T., & Searcy, C. (2010). Rheologic and structural controls on the deformation of Okmok volcano, Alaska: FEMs, InSAR and ambient seismic noise tomography. Journal of Geophysical Research, 115(B02409).Google Scholar
  63. Mastin, L. G., & Ghiorso, M. S. (2000). A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. U.S. Geological Survey Open File Report 00-209, 61.Google Scholar
  64. Matzel, J. E. P., Bowring, S. A., & Miller, R. B. (2006). Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. Geological Society of America Bulletin, 118(11–12), 1412–1430.CrossRefGoogle Scholar
  65. Menand, T. (2008). The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth and Planetary Science Letters, 267, 93–99.CrossRefGoogle Scholar
  66. Menand, T., & Phillips, J. C. (2007). Gas segregation in dykes and sills. Journal of Volcanology and Geothermal Research, 159(4), 393–408.CrossRefGoogle Scholar
  67. Michaut, C. (2011). Dynamics of magmatic intrusions in the upper crust: Theory and applications to laccoliths on Earth and the Moon. Journal of Geophysical Research, 116(B5).Google Scholar
  68. Michaut, C., & Jaupart, C. (2006). Ultra-rapid formation of large volumes of evolved magma. Earth and Planetary Science Letters, 250(1), 38–52.CrossRefGoogle Scholar
  69. Michel, J., Baumgartner, L., Putlitz, B., Schaltegger, U., & Ovtcharova, M. (2008). Incremental growth of the Patagonian Torres del Paine laccolith over 90 ky. Geology, 36(6), 459–462.CrossRefGoogle Scholar
  70. Newman, A. V., Dixon, T. H., Ofoegbu, G. I., & Dixon, J. E. (2001). Geodetic and seismic constraints on recent activity at Long Valley Caldera, California: Evidence for viscoelastic rheology. Journal of Volcanology and Geothermal Research, 105(3), 183–206.CrossRefGoogle Scholar
  71. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  72. Papale, P., Moretti, R., & Barbato, D. (2006). The compositional dependence of the saturation surface of H\(_2\)O + CO\(_2\) fluids in silicate melts. Chemical Geology, 229, 78–95.CrossRefGoogle Scholar
  73. Parker, A. L., Biggs, J., & Lu, Z. (2014). Investigating long-term subsidence at Medicine Lake Volcano, CA, using multi temporal InSAR. Geophys. J. Int., 199(2), 844–859.CrossRefGoogle Scholar
  74. Parks, M. M., Moore, J., Papanikolaou, X., Biggs, J., Mather, T. A., Pyle, D. M., et al. (2015). From quiescence to unrest-20 years of satellite geodetic measurements at Santorini volcano. Greece. Journal of Geophysical Research, 120(2), 1309–1328.Google Scholar
  75. Pasquarè, F., & Tibaldi, A. (2007). Structure of a sheet-laccolith system revealing the interplay between tectonic and magma stresses at Stardalur Volcano, Iceland. Journal of Volcanology and Geothermal Research, 161(1), 131–150.CrossRefGoogle Scholar
  76. Pedersen, R., & Sigmundsson, F. (2006). Temporal development of the 1999 intrusive episode in the Eyjafjallajökull volcano, Iceland, derived from InSAR images. Bulletin of Volcanology, 68(4), 377–393.CrossRefGoogle Scholar
  77. Petford, N., & Gallagher, K. (2001). Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth and Planetary Science Letters, 193(3), 483–499.CrossRefGoogle Scholar
  78. Philpotts, A. (1990). Principles of igneous and metamorphic petrology. Old Tappan, NJ, US: Prentice-Hall.Google Scholar
  79. Piwinskii, A. J., & Wyllie, P. J. (1968). Experimental studies of igneous rock series: a zoned pluton in the Wallowa batholith, Oregon. The Journal of Geology, 76(2), 205–234.CrossRefGoogle Scholar
  80. Poland, M. P., Bürgmann, R., Dzurisin, D., Lisowski, M., Masterlark, T., Owen, S., et al. (2006). Constraints on the mechanism of long-term, steady subsidence at Medicine Lake volcano, northern California, from GPS, levelling and InSAR. Journal of Volcanology and Geothermal Research, 150(1), 55–78.CrossRefGoogle Scholar
  81. Pritchard, M. E. (2003). Recent crustal deformation in west-central south America. Ph.D. thesis, Calif. Inst. Technol., Pasadena, from,
  82. Pritchard, M. E., & Simons, M. (2004a). An InSAR-based survey of volcanic deformation in the central Andes. Geochemistry, Geophysics, Geosystems, 5(2).Google Scholar
  83. Pritchard, M. E., & Simons, M. (2004b). Surveying volcanic arcs with satellite radar interferometry: The Central Andes, Kamchatka, and beyond. GSA Today, 14(8), 4–10.Google Scholar
  84. Pyle, D. M., Mather, T. A., & Biggs, J. (2013). Remote sensing of volcanoes and volcanic processes: Integrating observation and modelling-introduction. Geological Society, London, Special Publications, 380(1), 1–13.CrossRefGoogle Scholar
  85. Reymer, A., & Schubert, G. (1984). Phanerozoic addition rates to the continental crust and crustal growth. Tectonics, 3(1), 63–77.CrossRefGoogle Scholar
  86. Riddick, S. N., & Schmidt, D. A. (2011). Time-dependent changes in volcanic inflation rate near Three Sisters, Oregon, revealed by InSAR. Geochemistry, Geophysics, Geosystems, 12(12).Google Scholar
  87. Ritter, J. R. R., & Evans, J. R. (1997). Deep structure of Medicine Lake volcano, California. Tectonophysics, 275(1), 221–241.CrossRefGoogle Scholar
  88. Robertson, E. C. (1988). Thermal properties of rocks. U.S. Geological Survey Open File Report 88-441.Google Scholar
  89. Rothstein, D. A., Manning, C. E. (2003). Geothermal gradients in continental magmatic arcs: Constraints from the eastern Peninsular Ranges batholith, Baja California, México (pp. 337–354). Special Papers - Geological Society of America.Google Scholar
  90. Sadofsky, S. J., Portnyagin, M., Hoernle, K., & van den Bogaard, P. (2008). Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contributions to Mineralogy and Petrology, 155(4), 433–456.CrossRefGoogle Scholar
  91. Segall, P. (2010). Earthquake and volcano deformation. Princeton, New Jersey, US: Princeton University Press.CrossRefGoogle Scholar
  92. Shaw, H. R., Jackson, E. D., & Bargar, K. E. (1980). Volcanic periodicity along the Hawaiian-Emperor chain. American Journal of Science, 280, 667–708.Google Scholar
  93. Sigmundsson, F. (2006). Iceland geodynamics: Crustal deformation and divergent plate tectonics. Chichester, UK: Springer-Praxis.Google Scholar
  94. Sigmundsson, F., Vadon, H., & Massonnet, D. (1997). Readjustment of the Krafla spreading segment to crustal rifting measured by Satellite Radar Interferometry. Geophysical Research Letters, 24(15), 1843–1846.CrossRefGoogle Scholar
  95. Sparks, R. S. J., Folkes, C. B., Humphreys, M. C. S., Barfod, D. N., Clavero, J., Sunagua, M. C., et al. (2008). Uturuncu volcano, Bolivia: Volcanic unrest due to mid-crustal magma intrusion. American Journal of Science, 308(6), 727–769.CrossRefGoogle Scholar
  96. Staudigel, H., & Schmincke, H. (1984). The Pliocene seamount series of La Palma/Canary Islands. Journal of Geophysical Research, 89(B13), 11195–11215.CrossRefGoogle Scholar
  97. Sturkell, E., & Sigmundsson, F. (2000). Continuous deflation of the Askja caldera, Iceland, during the 1983–1998 non eruptive period. Journal of Geophysical Research, 115(B04401), 671–684.Google Scholar
  98. Tallarico, A., Dragoni, M., Anzidei, M., & Esposito, A. (2003). Modeling long-term ground deformation due to the cooling of a magma chamber: Case of Basiluzzo island, Aeolian Islands, Italy. Journal of Geophysical Research, 108(B12), 2568.CrossRefGoogle Scholar
  99. Taran, Y. A. (2009). Geochemistry of volcanic and hydrothermal fluids and volatile budget of the kamchatka-kuril subduction zone. Geochimica et Cosmochimica Acta, 73(4), 1067–1094.CrossRefGoogle Scholar
  100. Thorpe, R. S., Francis, P. W., & Harmon, R. S. (1981). Andean andesites and crustal growth. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 301(1461), 305–320.CrossRefGoogle Scholar
  101. Turcotte, D. L., & Schubert, G. (1982). Geodynamics. Cambridge, UK: Cambridge University Press.Google Scholar
  102. Valentine, G. A., & Krogh, K. E. C. (2006). Emplacement of shallow dikes and sills beneath a small basaltic volcanic center-the role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth and Planetary Science Letters, 246(3), 217–230.CrossRefGoogle Scholar
  103. Wadge, G. (1980). Output rate of magma from active central volcanoes. Nature, 288, 253–255.CrossRefGoogle Scholar
  104. Wagner, T. P., Donnelly-Nolan, J. M., & Grove, T. L. (1995). Evidence of hydrous differentiation and crystal accumulation in the low Mg-O, high-Al\(_2\)O\(_3\) Lake Basalt from Medicine Lake Volcano, California. Contributions to Mineralogy Petrology, 121, 201–216.CrossRefGoogle Scholar
  105. White, S. M., Crisp, J. A., & Spera, F. J. (2006). Long-term volumetric eruption rates and magma budgets. Geochemistry, Geophysics, Geosystems, 7(3), 1–20.CrossRefGoogle Scholar
  106. Whitney, J. A. (1988). The Origin of Granite - the role and source of water in the evolution of Granitic Magmas. Geological Society of America Bulletin, 100, 1886–1897.CrossRefGoogle Scholar
  107. Whittington, A. G., Hofmeister, A. M., & Nabelek, P. (2009). Temperature-dependent thermal diffusivity of EarthÕs crust and implications for magmatism. Nature, 458, 319–321.CrossRefGoogle Scholar
  108. Wollenberg, H. A., & Smith, A. R. (1987). Radiogenic heat production of crustal rocks: An assessment based on geochemical data. Geophysical Research Letters, 14(3), 295–298.CrossRefGoogle Scholar
  109. Worster, M. G., Huppert, H. E., & Sparks, R. S. J. (1990). Convection and crystallization in magma cooled from above. Earth and Planetary Science Letters, 101(1), 78–89.CrossRefGoogle Scholar
  110. Wright, T. J., Ebinger, C., Biggs, J., Ayele, A., Yirgu, G., Keir, D., et al. (2006). Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature, 442(7100), 291–294.CrossRefGoogle Scholar
  111. Zucca, J. J., Fuis, G. S., Milkereit, B., Mooney, W. D., & Catchings, R. D. (1986). Crustal structure of northeastern California. Journal of Geophysical Research, 91(B7), 7359–7382.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin UniversityPerthAustralia

Personalised recommendations