Systematic Assessment of Atmospheric Uncertainties for InSAR Data at Volcanic Arcs Using Large-Scale Atmospheric Models: Application to the Cascade Volcanoes

  • Amy Laura ParkerEmail author
Part of the Springer Theses book series (Springer Theses)


Satellite Radar Interferometry (InSAR) is suited to monitoring ground deformation on the scale of volcanic arcs, providing insight into the eruptive cycle over both long and short time periods. However, these measurements are often contaminated with atmospheric artefacts caused by changes in the refractivity of the atmosphere. Here, we test the use of two large-scale atmospheric models, ERA-Interim (ERA-I) and North American Regional Reanalysis (NARR), to correct atmospheric uncertainties in InSAR data from the Cascades Volcanic Arc, United States. At Lassen Volcanic Center, we find that NARR reduces interferogram standard deviation in 79 % of cases by an average of 22 %. Using NARR, we develop a strategy to produce a priori estimates of atmospheric uncertainties on an arc-wide basis. We show that in the Cascades, the RMS variation in range change is dependent upon volcano topography and increases by 0.7 cm per kilometre of relief. We use this to estimate detection thresholds for long-term monitoring of small magnitude (1 cm/year) deformation signals, and short-term monitoring of ground deformation associated with pre-eruptive unrest. This new approach of assessing atmospheric uncertainties a priori is widely applicable to other volcanic arcs, and provides realistic estimates of atmospheric uncertainties suitable for use in near-real-time analysis of InSAR data during periods of volcanic unrest.


Atmospheric Water Vapour InSAR Data Zenith Total Delay Atmospheric Noise Atmospheric Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agram, P. S., Jolivet, R., Riel, B., Lin, Y. N., Simons, M., Hetland, E., Doin, M. P., & Lasserre, C. (2013). New Radar Interferometric Time Series Analysis Toolbox released. Eos, Trans. AGU 94(7), 69–76.Google Scholar
  2. Baby, H., Gole, P., & Lavergnat, J. (1988). A model for the tropospheric excess path length of radio waves from surface meteorological measurements. Radio Science, 23(6), 1023–1038.CrossRefGoogle Scholar
  3. Bathke, H., Shirzaei, M., & Walter, T. R. (2011). Inflation and deflation at the steep-sided Llaima stratovolcano (Chile) detected by using InSAR. Geophysical Research Letters, 38(10).Google Scholar
  4. Beauducel, F., Briole, P., & Froger, J.-L. (2000). Volcano-wide fringes in ERS synthetic aperture radar interferograms of Etna (1992–1998): Deformation or tropospheric effect? Journal of Geophysical Research, 105(B7), 16391–16402.CrossRefGoogle Scholar
  5. Bekaert, D. P. S., Hooper, A., & Wright, T. J. (2015). A spatially-variable power-law tropospheric correction technique for InSAR data. Journal of Geophysical Research, 120(2), 1345–1356.Google Scholar
  6. Bell, S. (2012). Landscape: pattern, perception and process. New York, US: Routledge.Google Scholar
  7. Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375–2383.CrossRefGoogle Scholar
  8. Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., et al. (2011). Atmospheric conservation properties in ERA-Interim. Quarterly Journal of the Royal Meteorological Society, 137(659), 1381–1399.CrossRefGoogle Scholar
  9. Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research, 97(D14), 15787–15801.CrossRefGoogle Scholar
  10. Biggs, J., Wright, T., Lu, Z., & Parsons, P. (2007). Multi-interferogram method for measuring inter seismic deformation: Denali Fault, Alaska. Geophysical Journal International, 170, 1165–1179.CrossRefGoogle Scholar
  11. Biggs, J., Anthony, E. Y., & Ebinger, C. J. (2009). Multiple inflation and deflation events at Kenyan volcanoes. East African Rift. Geology, 37(11), 979–982.Google Scholar
  12. Bürgmann, R., Rosen, P. A., & Fielding, E. J. (2000). Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annual Review of Earth and Planetary Sciences, 28(1), 169–209.CrossRefGoogle Scholar
  13. Biggs, J., Ebmeier, S. K., Aspinall, W. P., Lu, Z., Pritchard, M. E., Sparks, R. S. J., Mather, T. A. (2014). Global link between deformation and volcanic eruption quantified by satellite imagery. Nature Communications 5.Google Scholar
  14. Cavalié, O., Doin, M.-P., Lasserre, C., & Briole, P. (2007). Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure. Journal of Geophysical Research, 112(B3).Google Scholar
  15. Chaussard, E., Amelung, F., & Aoki, Y. (2013). Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. Journal of Geophysical Research, 118(8), 3957–3969.Google Scholar
  16. Chaussard, E., & Amelung, F. (2014). Regional controls on magma ascent and storage in volcanic arcs. Geochemistry, Geophysics, Geosystems, 15(4), 1407–1418.CrossRefGoogle Scholar
  17. Daly, C., Taylor, G. H., Gibson, W. P. (1997). The PRISM approach to mapping precipitation and temperature. In Proceedings of the 10th AMS Conference on Applied Climatology. pp. 20–23.Google Scholar
  18. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597.CrossRefGoogle Scholar
  19. Delacourt, C., Briole, P., & Achache, J. A. (1998). Tropospheric corrections of SAR interferograms with strong topography. Application to Etna. Geophysical Research Letters, 25(15), 2849–2852.CrossRefGoogle Scholar
  20. Doin, M.-P., Lasserre, C., Peltzer, G., Cavalie, O., & Doubre, C. (2009). Correction of stratified atmospheric delays in SAR interferometry: Validation with global atmospheric models. Journal of Applied Geophysics, 69, 35–50.CrossRefGoogle Scholar
  21. Dzurisin, D., Poland, M. P., & Bürgmann, R. (2002). Steady subsidence of Medicine Lake Volcano, Northern California, revealed by repeated levelling surveys. Journal of Geophysical Research, 107(B12).Google Scholar
  22. Dzurisin, D., Lisowski, M., Wicks, C. W., Poland, M. P., & Endo, E. T. (2006). Geodetic observations and modeling of magmatic inflation at the Three Sisters volcanic center, central Oregon Cascade Range, USA. Journal of Volcanology and Geothermal Research, 150(1), 35–54.CrossRefGoogle Scholar
  23. Dzurisin, D. (2007). Volcano deformation: geodetic monitoring techniques. Chichester, UK: Springer-Praxis.Google Scholar
  24. Dzurisin, D., Lisowski, M., & Wicks, C. W. (2009). Continuing inflation at Three Sisters volcanic center, central Oregon Cascade Range, USA, from GPS, leveling, and InSAR observations. Bulletin of Volcanology, 71(10), 1091–1110.CrossRefGoogle Scholar
  25. Ebmeier, S. K., Biggs, J., Mather, T. A., & Amelung, F. (2013a). Applicability of InSAR to tropical volcanoes: insights from Central America. Geological Society, London, Special Publications, 380(1), 15–37.CrossRefGoogle Scholar
  26. Ebmeier, S. K., Biggs, J., Mather, T. A., & Amelung, F. (2013b). On the lack of InSAR observations of magmatic deformation at Central American volcanoes. Journal of Geophysical Research, 118(5), 2571–2585.Google Scholar
  27. Ebmeier, S. K., Biggs, J., Muller, C., & Avard, G. (2014). Thin-skinned mass-wasting responsible for widespread deformation at Arenal volcano. Frontiers in Earth Science, 2, 35.CrossRefGoogle Scholar
  28. Eff-Darwich, A., Pérez, J. C., Fernández, J., García-Lorenzo, B., González, A., & González, P. J. (2012). Using a mesoscale meteorological model to reduce the effect of tropospheric water vapour from DInSAR data: A case study for the island of Tenerife. Canary Islands. Pure and applied geophysics, 169(8), 1425–1441.CrossRefGoogle Scholar
  29. Elliott, J. R., Biggs, J., Parsons, P., & Wright, T. J. (2008). InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophysical Research Letters, 35(12).Google Scholar
  30. Emardson, T. R., Simons, M., & Webb, F. H. (2003). Neutral atmospheric delay in interferometric synthetic aperture radar applications: Statistical description and mitigation. Journal of Geophysical Research, 108(B5).Google Scholar
  31. Ewert, J. W., Guffanti, M., Murray, T. L. (2005). An assessment of volcanic threat and monitoring capabilities in the United States: framework for a National Volcano Early Warning System NVEWS. U.S. Geological Survey Open File Report  (2005-1164).Google Scholar
  32. Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., et al. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2).Google Scholar
  33. Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20.CrossRefGoogle Scholar
  34. Foster, J., & Bevis, M. (2003). Lognormal distribution of precipitable water in Hawaii. Geochemistry, Geophysics, Geosystems, 4(7).Google Scholar
  35. Foster, J., Brooks, B., Cherubini, T., Shacat, C., Businger, S., & Werner, C. L. (2006). Mitigating atmospheric noise for InSAR using a high resolution weather model. Geophysical Research Letters, 33(16).Google Scholar
  36. Foster, J., Kealy, J., Cherubini, T., Businger, S., Lu, Z., & Murphy, M. (2013). The utility of atmospheric analyses for the mitigation of artifacts in InSAR. Journal of Geophysical Research, 118(2), 748–758.Google Scholar
  37. Fournier, T. J., Pritchard, M. E., & Riddick, S. N. (2010). Duration, magnitude, and frequency of subaerial volcano deformation events: New results from Latin America using InSAR and a global synthesis. Geochemistry, Geophysics, Geosystems, 11(1).Google Scholar
  38. Goldstein, R., Zebker, H., & Werner, C. (1988). Satellite radar interferometry: Two dimensional phase unwrapping. Radio Science, 23(4), 713–720.CrossRefGoogle Scholar
  39. Goldstein, R., & Werner, C. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21), 4035–4038.CrossRefGoogle Scholar
  40. Gourmelen, N., Amelung, F., & Lanari, R. (2010). Interferometric synthetic aperture radar-GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone. Journal of Geophysical Research, 115(B9).Google Scholar
  41. Grubb, P. J. (1971). Interpretation of the Massenerhebung effect on tropical mountains. Nature, 229, 44–45.CrossRefGoogle Scholar
  42. Hanssen, R., Rocca, F. (2009). Sentinel 1: Interferometric applications. In Proceedings of the Geoscience and Remote Sensing Symposium, Vol. 1 (pp. 1–56). IEEE International, IGARSS 2009.Google Scholar
  43. Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Analysis. Norwell, MA, US: Kluwer Acad.CrossRefGoogle Scholar
  44. Heleno, S. I. N., Frischknecht, C., & dOreye, N., Lima, J. N. P., Faria, B., Wall, R., Kervyn, F. (2010). Seasonal tropospheric influence on SAR interferograms near the ITCZ-The case of Fogo Volcano and Mount Cameroon. Journal of African Earth Sciences, 58(5), 833–856.Google Scholar
  45. Jolivet, R., Grandin, R., Lasserre, C., & M.-P., D., Peltzer, G.,. (2011). Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophysical Research Letters, 38(L17311).Google Scholar
  46. Jolivet, R., Agram, P. S., Lin, N. Y., Simons, M., Doin, M.-P., Peltzer, G., et al. (2014). Improving InSAR geodesy using global atmospheric models. Journal of Geophysical Research, 119(3), 2324–2341.Google Scholar
  47. Jónsson, S., Zebker, H., Segall, P., & Amelung, F. (2002). Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bulletin of the Seismological Society of America, 92(4), 1377–1389.CrossRefGoogle Scholar
  48. Li, Z., Fielding, E. J., Cross, P., & Muller, J.-P. (2006a). Interferometric synthetic aperture radar atmospheric correction: GPS topography-dependent turbulence model. Journal of Geophysical Research, 111(B2).Google Scholar
  49. Li, Z. W., Ding, X. L., Huang, C., Wadge, G., & Zheng, D. W. (2006b). Modeling of atmospheric effects on InSAR measurements by incorporating terrain elevation information. Journal of Atmospheric and Solar-Terrestrial Physics, 68(11), 1189–1194.CrossRefGoogle Scholar
  50. Lin, Y. N., Simons, M., Hetland, E. A., Muse, P., & DiCaprio, C. (2010). A multiscale approach to estimating topographically correlated propagation delays in radar interferograms. Geochemistry, Geophysics, Geosystems, 11(9).Google Scholar
  51. Lipman, P. W., & Mullineaux, D. R. E. (1981). The 1980 Eruptions of Mount St. Helens, Washington. U.S. Geological Survey Professional Paper, 1250, 844p.Google Scholar
  52. Lohman, R., & Simons, M. (2005). Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochemistry, Geophysics, Geosystems, 6(1).Google Scholar
  53. Lu, Z., Power, J. A., McConnell, V. S., Wicks, C., & Dzurisin, D. (2002). Preeruptive inflation and surface interferometric coherence characteristics revealed by satellite radar interferometry at Makushin Volcano, Alaska: 1993–2000. Journal of Geophysical Research, 107(B11).Google Scholar
  54. Lu, Z., & Dzurisin, D. (2014). InSAR Imaging of Aleutian Volcanoes: Monitoring a Volcanic Arc from Space. Chichester, UK: Springer-Praxis.CrossRefGoogle Scholar
  55. Lu, Z., & Freymueller, J. T. (1998). Synthetic aperture radar interferometry coherence analysis over Katmai volcano group. Alaska. Journal of Geophysical Research, 103(B12), 29887–29894.CrossRefGoogle Scholar
  56. Mass, C. F. (2008). The Weather of the Pacific Northwest. WA, US: University of Washington Press.Google Scholar
  57. Massonnet, D., Feigl, K. L., Vadon, H., Rossi, M., 1996. Coseismic deformation field of the M = 6.7 Northridge, California earthquake of January 17. (1994). recorded by two radar satellites using interferometry. Geophysical Research Letters, 23(9), 969–972.Google Scholar
  58. Massonnet, D., Briole, P., & Arnaud, A. (1995). Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375(6532), 567–570.CrossRefGoogle Scholar
  59. Massonnet, D., & Feigl, K. L. (1995). Discrimination of geophysical phenomena in satellite radar interferograms. Geophysical Research Letters, 22(12), 1537–1540.CrossRefGoogle Scholar
  60. Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36(4), 44–500.CrossRefGoogle Scholar
  61. Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., et al. (2006). North American Regional Reanalysis. Bull. Am. Meteol. Soc., 87(3), 343–360.CrossRefGoogle Scholar
  62. Miranda, P. M. A., & James, I. N. (1992). Non-Linear Three-Dimensional Effects On Gravity-Wave Drag: Splitting Flow and Breaking Waves. Quarterly Journal of the Royal Meteorological Society, 118(508), 1057–1081.CrossRefGoogle Scholar
  63. Pallister, J. S., Schneider, D. J., Griswold, J. P., Keeler, R. H., Burton, W. C., Noyles, C., et al. (2013). Merapi 2010 eruption-Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting. Journal of Volcanology and Geothermal Research, 261, 144–152.CrossRefGoogle Scholar
  64. Parker, A. L., Biggs, J., & Lu, Z. (2014). Investigating long-term subsidence at Medicine Lake Volcano, CA, using multi temporal InSAR. Geophys. J. Int., 199(2), 844–859.CrossRefGoogle Scholar
  65. Passarelli, L., & Brodsky, E. E. (2012). The correlation between run-up and repose times of volcanic eruptions. Geophys. J. Int., 188(3), 1025–1045.CrossRefGoogle Scholar
  66. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644.CrossRefGoogle Scholar
  67. Peltier, A., Bianchi, M., Kaminski, E., Komorowski, J.-C., Rucci, A., & Staudacher, T. (2010). PSInSAR as a new tool to monitor pre-eruptive volcano ground deformation: Validation using GPS measurements on Piton de la Fournaise. Geophysical Research Letters, 37(12).Google Scholar
  68. Phillipson, G., Sobradelo, R., & Gottsmann, J. (2013). Global volcanic unrest in the 21st century: an analysis of the first decade. Journal of Volcanology and Geothermal Res., 264, 183–196.CrossRefGoogle Scholar
  69. Pinel, V., Hooper, A., De la Cruz-Reyna, S., Reyes-Davila, G., Doin, M.-P., & Bascou, P. (2011). The challenging retrieval of the displacement field from InSAR data for andesitic stratovolcanoes: Case study of Popocatepetl and Colima Volcano, Mexico. Journal of Volcanology and Geothermal Research, 200(1), 49–61.CrossRefGoogle Scholar
  70. Pinel, V., Poland, M. P., & Hooper, A. (2014). Volcanology: Lessons learned from Synthetic Aperture Radar imagery. Journal of Volcanology and Geothermal Research, 289, 81–113.CrossRefGoogle Scholar
  71. Poland, M., Bawden, G., Lisowski, M., Dzurisin, D. (2004). Newly discovered subsidence at Lassen Peak, southern Cascade Range, California, from InSAR and GPS. [abs.]: Eos (American Geophysical Union Transactions) vol. 85, Fall Meeting Supplement, abs. G51A-0068.Google Scholar
  72. Poland, M. P., Bürgmann, R., Dzurisin, D., Lisowski, M., Masterlark, T., Owen, S., et al. (2006). Constraints on the mechanism of long-term, steady subsidence at Medicine Lake volcano, northern California, from GPS, levelling and InSAR. Journal of Volcanology and Geothermal Research, 150(1), 55–78.CrossRefGoogle Scholar
  73. Poland, M. P., & Lu, Z. (2008). Radar Interferometry Observations of Surface Displacements During Pre- and Coeruptive Periods at Mount St. Helens, Washington, 1992–2005. U. S. Geological Survey Professional Paper, 1750, 361–382.Google Scholar
  74. Price, M. F., Byers, A. C., Friend, D. A., Kohler, T., & Price, L. W. (2013). Mountain Geography: Physical and Human Dimensions. US: University of California Press, CA.Google Scholar
  75. Pritchard, M. E., & Simons, M. (2004). An InSAR-based survey of volcanic deformation in the central Andes. Geochemistry, Geophysics, Geosystems, 5(2).Google Scholar
  76. Puysségur, B., Michel, R., & Avouac, J.-P. (2007). Tropospheric phase delay in interferometric synthetic aperture radar estimated from meteorological model and multispectral imagery. Journal of Geophysical Research, 112(B5).Google Scholar
  77. Remy, D., Chen, Y., Froger, J. L., Bonvalot, S., Cordoba, M., & Fustos, J. (2015). Revised interpretation of recent InSAR signals observed at Llaima volcano (Chile). Geophysical Research Letters, 42(10).Google Scholar
  78. Remy, D., Bonvalot, S., Briole, P., & Murakami, M. (2003). Accurate measurements of tropospheric effects in volcanic areas from SAR interferometry data: Application to Sakurajima volcano (Japan). Earth and Planetary Science Letters, 213(3), 299–310.CrossRefGoogle Scholar
  79. Riddick, S. N., & Schmidt, D. A. (2011). Time-dependent changes in volcanic inflation rate near Three Sisters, Oregon, revealed by InSAR. Geochemistry, Geophysics, Geosystems, 12(12), 20111217.Google Scholar
  80. Riddick, S. N., Schmidt, D. A., & Deligne, N. I. (2012). An analysis of terrain properties and the location of surface scatteres from persistent scatterer interferometry. ISPRS Journal of Photogrammetry and Remote Sensing, 73, 50–57.CrossRefGoogle Scholar
  81. Rogers, E., Ek, M., Lin, Y., Mitchell, K., Parrish, D., & DiMego, G. (2001). Changes to the NCEP Meso Eta analysis and forecast system: Assimilation of observed precipitation, upgrades to land-surface physics, modified 3DVAR analysis. NCEP: EMC.Google Scholar
  82. Rosen, P., Hensley, S., Peltzer, G., & Simons, M. (2004). Updated Repeat Orbit Interferometry package released. EOS, Trans. AGU 85 (5).Google Scholar
  83. Rosen, P. A., Hensley, S., Zebker, H. A., & Webb, F. H. (1996). Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research, 101(E10), 23109–23125.CrossRefGoogle Scholar
  84. Shirzaei, M., & Bürgmann, R. (2012). Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms. Geophysical Research Letters, 39(1).Google Scholar
  85. Simmons, A., Uppala, S., & D., D., Kobayashi, S. (2007). ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, 110, 25–35.Google Scholar
  86. Simons, M., & Rosen, P. A. (2007). Interferometric synthetic aperture radar geodesy., 3, 391–446.Google Scholar
  87. Smith, E. K., & Weintraub, S. (1953). The constants in the equation for atmospheric refractive index at radio frequencies. Proceedings of the IRE, 41(8), 1035–1037.CrossRefGoogle Scholar
  88. Suzuki, S., Osawa, Y., Hatooka, Y., Watanabe, T. (2009). The Post-ALOS program. In Proceedings of the 27th ISTS International Symposium on Space Technology and Science. Vol. 2009-n-02.Google Scholar
  89. Taylor, M., & Peltzer, G. (2006). Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry. Journal of Geophysical Research, 111(B12).Google Scholar
  90. Uppala, S., & D., D., Kobayashi, S., Berrisford, P., Simmons, A.,. (2008). Towards a climate dataassimilation system: status update of ERA-Interim. ECMWF Newsletter, 115, 12–18.Google Scholar
  91. Wadge, G., Webley, P. W., James, I. N., Bingley, R., Dodson, A., Waugh, S., et al. (2002). Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna. Geophysical Research Letters, 29(19), 11–1.CrossRefGoogle Scholar
  92. Wadge, G., Zhu, M., Holley, R. J., James, I. N., Clark, P. A., Wang, C., et al. (2010). Correction of atmospheric delay effects in radar interferometry using a nested mesoscale atmospheric model. Journal of Applied Geophysics, 72(2), 141–149.CrossRefGoogle Scholar
  93. Walters, R. J., Bekaert, D., Wright, T. J., Parker, D. J., Hooper, A. J., Crippa, P., Li, Z. (2015). A Global Validation of ERA-Interim Atmospheric Correction for InSAR. In: Proc., Fringe 2015 Workshop. No. 108.Google Scholar
  94. Walters, R. J., Elliott, J. R., Li, Z., & Parsons, B. (2013). Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmosphere-corrected InSAR. Journal of Geophysical Research, 118(7), 3674–3690.Google Scholar
  95. Webley, P. W., Wadge, G., & James, I. N. (2004). Determining radio wave delay by non-hydrostatic atmospheric modelling of water vapour over mountains. Physics and Chemistry of the Earth, 29(2), 139–148.CrossRefGoogle Scholar
  96. Wicks, C. W., Dzurisin, D., Ingebritsen, S., Thatcher, W., Lu, Z., & Iverson, J. (2002). Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range. USA. Geophysical Research Letters, 29(7), 26–1.Google Scholar
  97. Zebker, H. A., Rosen, P. A., & Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research, 102(B4), 7547–7563.CrossRefGoogle Scholar
  98. Zhu, M., Wadge, G., Holley, R. J., James, I. N., Clark, P. A., Wang, C., et al. (2007). High-resolution forecast models of water vapor over mountains: comparison with MERIS and meteosat data. Geoscience and Remote Sensing Letters, IEEE, 4(3), 401–405.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin UniversityPerthAustralia

Personalised recommendations