Investigating Long-Term Subsidence at Medicine Lake Volcano, CA, Using Multi Temporal InSAR

  • Amy Laura ParkerEmail author
Part of the Springer Theses book series (Springer Theses)


Long-term volcanic subsidence provides insight into inter-eruptive processes, which comprise the longest portion of the eruptive cycle. Ground based geodetic surveys of Medicine Lake Volcano (MLV), northern CA, document subsidence at rates of \({\sim }-\)10 mm/yr between 1954 and 2004. The long observation period plus the duration and stable magnitude of this signal presents an ideal opportunity to study long-term volcanic deformation, but this first requires accurate knowledge of the geometry and magnitude of the source. Best-fitting analytical source models to past leveling and GPS datasets show conflicting source parameters - primarily the model depth. To overcome this, we combine multiple tracks of InSAR data, each with a different look angle, to improve upon the spatial resolution of ground based measurements. We compare the results from InSAR to those of past geodetic studies, extending the geodetic record to 2011 and demonstrating that subsidence at MLV continues at \({\sim }-\)10 mm/yr. Using geophysical inversions, we obtain the best-fitting analytical source model - a sill located at 9–10 km depth beneath the caldera. This model geometry is similar to those of past studies, providing a good fit to the high spatial density of InSAR measurements, whilst accounting for the high ratio of vertical to horizontal deformation derived from InSAR and recorded by existing leveling and GPS datasets. We discuss possible causes of subsidence and show that this model supports the hypothesis that deformation at MLV is driven by tectonic extension, gravitational loading, plus a component of volume loss at depth, most likely due to cooling and crystallisation within the intrusive complex that underlies the edifice. Past InSAR surveys at MLV, and throughout the Cascades, are of variable success due to dense vegetation, snow cover and atmospheric artefacts. In this study, we demonstrate how InSAR may be successfully used in this setting by applying a suite of multi temporal analysis methods that account for atmospheric and orbital noise sources. These methods include: a stacking strategy based upon the noise characteristics of each dataset; pixel-wise rate-map formation (\(\pi \)-RATE); and persistent scatterer InSAR (StaMPS).


Ground Deformation Intrusive Complex InSAR Data Persistent Scatterer Phase Standard Deviation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amelung, F., & Bell, J. (2003). Interferometric synthetic aperture radar observations of the 1994 Double Spring Flat, Nevada, earthquake (M5.9): Main shock accompanied by triggered slip on a conjugate fault. Journal of Geophysical Research, 108(B9), 2433.CrossRefGoogle Scholar
  2. Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., & De Natale, G. (2006). Evidence for fluid migration as the source of deformation at Campi Flegrei caldera, (Italy). Geophysical Research Letters, 33, L01307.CrossRefGoogle Scholar
  3. Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375–2383.CrossRefGoogle Scholar
  4. Biggs, J., Wright, T., Lu, Z., & Parsons, P. (2007). Multi-interferogram method for measuring inter seismic deformation: Denali Fault, Alaska. Geophysical Journal International, 170, 1165–1179.CrossRefGoogle Scholar
  5. Biggs, J., Anthony, E. Y., & Ebinger, C. J. (2009a). Multiple inflation and deflation events at Kenyan volcanoes. East African Rift. Geology, 37(11), 979–982.Google Scholar
  6. Biggs, J., Robinson, D. P., & Dixon, T. H. (2009b). The 2007 Pisco, Peru, earthquake (M8.0): seismology and geodesy. Geophysical Journal International, 176, 657–669.CrossRefGoogle Scholar
  7. Biggs, J., Lu, Z., Fournier, T., & Freymueller, J. T. (2010). Magma flux at Okmok Volcano, Alaska, from a joint inversion of continuous GPS, campaign GPS and interferometric synthetic aperture radar. Journal of Geophysical Research, 115, B12401.CrossRefGoogle Scholar
  8. Biggs, J., Ebmeier, S. K., Aspinall, W. P., Lu, Z., Pritchard, M. E., Sparks, R. S. J., et al. (2014). Global link between deformation and volcanic eruption quantified by satellite imagery. Nature Communications, 5, 3471.CrossRefGoogle Scholar
  9. Blakely, R. J., Christiansen, R. L., Guffanti, M., Wells, R. E., Donnelly-Nolan, J. M., Muffler, L. J. P., et al. (1997). Gravity anomalies, Quaternary vents, and Quaternary faults in the southern Cascade Range, Oregon and California; implications for arc and backarc evolutiony. Journal of Geophysical Research, 102, 22513–22527.CrossRefGoogle Scholar
  10. Caricchi, L., Biggs, J., Annen, C., & Ebmeier, S. (2014). The influence of cooling, crystallisation and re-melting on the interpretation of geodetic signals in volcanic systems. Earth and Planetary Science Letters, 388, 166–174.CrossRefGoogle Scholar
  11. Cayol, V., & Cornet, F. H. (1998). Effects of topography on the interpretation of the deformation field of prominent volcanoes: Application to Etna. Geophysical Research Letters, 25(11), 1979–1982.CrossRefGoogle Scholar
  12. Chaussard, E., Amelung, F., & Aoki, Y. (2013). Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. Journal of Geophysical Research, 118(8), 3957–3969.Google Scholar
  13. de Zeeuz-van Dalfsen, E., Pedersen, R., Hooper, A., & Sigmundsson, F. (2012). Subsidence of Askja caldera 2000–2009: Modelling of deformation processes at an extensional plate boundary constrained by time series InSAR analysis. Journal of Volcanology and Geothermal Research, 213, 72–82.CrossRefGoogle Scholar
  14. Doin, M.-P., Lasserre, C., Peltzer, G., Cavalie, O., & Doubre, C. (2009). Correction of stratified atmospheric delays in SAR interferometry: Validation with global atmospheric models. Journal of Applied Geophysics, 69, 35–50.CrossRefGoogle Scholar
  15. Donnelly-Nolan, J. M. (1988). A magmatic model of Medicine Lake volcano, California. Journal of Volcanology and Geothermal Research, 93, 4412–4420.Google Scholar
  16. Donnelly-Nolan, J. M. (2010). Geologic map of Medicine Lake volcano, northern California. U.S. Geological Survey Scientific Investigations Map 2927, scale 1:50,000.Google Scholar
  17. Donnelly-Nolan, J. M., & Lanphere, M.A. (2005). Argon dating at and near Medicine Lake volcano, California: Results and data. U.S. Geological Survey Open-File Report (2005–1416).Google Scholar
  18. Donnelly-Nolan, J. M., Champion, D. E., Miller, C. D., Grove, T. L., & Trimble, D. A. (1990). Post- 11,000-year volcanism at Medicine Lake Volcano, Cascade Range, Northern California. Journal of Geophysical Research, 95(B12), 19693–19704.CrossRefGoogle Scholar
  19. Donnelly-Nolan, J. M., Grove, T. L., Lanphere, M. A., & Champion, D. E. (2008). Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades. Journal of Volcanology and Geothermal Research, 177, 313–328.CrossRefGoogle Scholar
  20. Dzurisin, D. (2007). Volcano deformation: Geodetic monitoring techniques. Chichester, UK: Springer-Praxis.Google Scholar
  21. Dzurisin, D., Donnelly-Nolan, J. M., Evans, J. R., & Walter, S. R. (1991). Crustal subsidence, seismicity, and structure near Medicine Lake volcano. California. Journal of Geophysical Research, 96(B10), 16319–16333.CrossRefGoogle Scholar
  22. Dzurisin, D., Wicks, J. C., & Thatcher, W. (1999). Renewed uplift at the Yellowstone Caldera measured by levelling surveys and satellite radar interferometry. Bulletin of Volcanology, 61(6), 349–355.CrossRefGoogle Scholar
  23. Dzurisin, D., Poland, M. P., & Bürgmann, R. (2002). Steady subsidence of Medicine Lake Volcano, Northern California, revealed by repeated levelling surveys. Journal of Geophysical Research, 107(B12), 2372.CrossRefGoogle Scholar
  24. Ebmeier, S. K., Biggs, J., Mather, T. A., & Amelung, F. (2013b). On the lack of InSAR observations of magmatic deformation at Central American volcanoes. Journal of Geophysical Research, 118(5), 2571–2585.Google Scholar
  25. Elliott, J. R., Biggs, J., Parsons, P., & Wright, T. J. (2008). InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophysical Research Letters, 35(12), L12309.CrossRefGoogle Scholar
  26. Evans, J. R., & Zucca, J. J. (1998). Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake Volcano, Northern California Cascade Range. Journal of Geophysical Research, 93(B12), 15016–15036.CrossRefGoogle Scholar
  27. Farr, T. G., & Kobrick, M. (2000). Shuttle radar topography mission produces a wealth of data. Eos, Transactions American Geophysical Union, 81(48), 583–585.CrossRefGoogle Scholar
  28. Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20.CrossRefGoogle Scholar
  29. Fialko, Y., Khazan, Y., & Simons, M. (2001a). Deformation due to a pressurised horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophysical Journal International, 146(1), 181–190.CrossRefGoogle Scholar
  30. Finn, C., & Williams, D. L. (1982). Gravity evidence for a shallow intrusion under Medicine Lake Volcano. California. Geology, 10(10), 503–507.CrossRefGoogle Scholar
  31. Foster, J., Brooks, B., Cherubini, T., Shacat, C., Businger, S., & Werner, C. L. (2006). Mitigating atmospheric noise for InSAR using a high resolution weather model. Geophysical Research Letters, 33(16), L16304.CrossRefGoogle Scholar
  32. Fuis, G. S., Zucca, J. J., Mooney, W. D., & Milkereit, B. (1987). A geological interpretation of seismic refraction results in north-eastern California. Bulletin of the Geological Society of America, 98(1), 53–65.CrossRefGoogle Scholar
  33. Garthwaite, M. C., Wang, H., & Wright, T. J. (2013). Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR. Journal of Geophysical Research, 118(9), 5071–5083.Google Scholar
  34. Goldstein, R., & Werner, C. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21), 4035–4038.CrossRefGoogle Scholar
  35. Goldstein, R., Zebker, H., & Werner, C. (1988). Satellite radar interferometry: Two dimensional phase unwrapping. Radio Science, 23(4), 713–720.CrossRefGoogle Scholar
  36. Gourmelen, N., Amelung, F., & Lanari, R. (2010). Interferometric synthetic aperture radar-GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone. Journal of Geophysical Research, 115(B9), B09408.CrossRefGoogle Scholar
  37. Hamling, I. J., Wright, T. J., Calais, E., Lewi, E., & Fukahata, Y. (2014). InSAR observations of post-rifting deformation around the Dabbahu rift segment, Afar. Ethiopia. Geophysical Journal International, 197(1), 33–49.CrossRefGoogle Scholar
  38. Hanssen, R. F. (2001). Radar interferometry: Data interpretation and analysis. Norwell, MA, US: Kluwer Academic.CrossRefGoogle Scholar
  39. Heiken, G. (1978). Plinian-type eruptions in the Medicine Lake Highland, California, and the nature of the underlying magma. Journal of Volcanology and Geothermal Research, 4(3), 375–402.CrossRefGoogle Scholar
  40. Hildreth, W. (2007). Quaternary magmatism in the Cascades - geological perspectives. U.S. Geological Survey Professional Paper (1744).Google Scholar
  41. Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo. Galápagos. Journal of Geophysical Research, 112(B7), B07407.Google Scholar
  42. Hooper, A., Pedersen, R., & Sigmundsson, F. (2009). Constraints on magma intrusion at Eyjafjallajökull and Katla volcanoes in Iceland, from time series SAR interferometry. The VOLUME project-volcanoes: understanding subsurface mass movement (pp. 13–24) Dublin: University College.Google Scholar
  43. Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), 1–5.CrossRefGoogle Scholar
  44. Johanson, I. A., & Bürgmann, R. (2005). Creep and quakes on the northern transition zone of the San Andreas fault from GPS and InSAR data. Geophysical Research Letters, 32(14), L14306.CrossRefGoogle Scholar
  45. Jónsson, S., Zebker, H., Segall, P., & Amelung, F. (2002). Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bulletin of the Seismological Society of America, 92(4), 1377–1389.CrossRefGoogle Scholar
  46. Li, Z. W., Ding, X. L., Huang, C., Wadge, G., & Zheng, D. W. (2006b). Modeling of atmospheric effects on InSAR measurements by incorporating terrain elevation information. Journal of Atmospheric and Solar-Terrestrial Physics, 68(11), 1189–1194.CrossRefGoogle Scholar
  47. Lohman, R., & Simons, M. (2005). Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochemistry, Geophysics, Geosystems, 6(1), Q01007.CrossRefGoogle Scholar
  48. Lowenstern, J. B., Donnelly-Nolan, J., Wooden, J. L., & Charlier, B. L. A. (2003). Volcanism, plutonism and hydrothermal alteration at Medicine Lake volcano, California. Proceedings, Twenty-Eighth Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California (p. 8).Google Scholar
  49. Lu, Z., & Dzurisin, D. (2014). InSAR Imaging of Aleutian Volcanoes: Monitoring a Volcanic Arc from Space. Chichester, UK: Springer-Praxis.CrossRefGoogle Scholar
  50. Lyons, S., & Sandwell, D. (2003). Fault creep along the southern San Andreas from InSAR, permanent scatterers and stacking. Journal of Geophysical Research, 108(B1), 2047–2070.CrossRefGoogle Scholar
  51. Massonnet, D., Feigl, K. L., Vadon, H., & Rossi, M. (1996). Coseismic deformation field of the M \(=\) 6.7 Northridge, California earthquake of January 17, 1994 recorded by two radar satellites using interferometry. Geophysical Research Letters, 23(9), 969–972.Google Scholar
  52. Mogi, K. (1958). Relations between eruptions of various volcanoes and the deformations of the ground surfaces around them. Bulletin of the Earthquake Research Institute of the University of Tokyo, 36, 99–134.Google Scholar
  53. Ofeigsson, B. G., Hooper, A., Sigmundsson, F., Sturkell, E., & Grapenthin, R. (2011). Deep magma storage at Hekla volcano, Iceland, revealed by InSAR time series analysis. Journal of Geophysical Research, 116(B5), B05401.CrossRefGoogle Scholar
  54. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  55. Parks, M. M., Biggs, J., Mather, T. A., Pyle, D. M., Amelung, F., Monsalve, M. L., et al. (2011). Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (2006–2009). Journal of Volcanology and Geothermal Research, 202(3), 228–240.Google Scholar
  56. Pinel, V., Hooper, A., De la Cruz-Reyna, S., Reyes-Davila, G., Doin, M.-P., & Bascou, P. (2011). The challenging retrieval of the displacement field from InSAR data for andesitic stratovolcanoes: Case study of Popocatepetl and Colima Volcano, Mexico. Journal of Volcanology and Geothermal Research, 200(1), 49–61.CrossRefGoogle Scholar
  57. Poland, M. P., & Lu, Z. (2008). Radar interferometry observations of surface displacements during pre- and coeruptive periods at Mount St. Helens, Washington, 1992–2005. U.S. geological survey professional paper (Vol. 1750, pp. 361–382).Google Scholar
  58. Poland, M. P., Bürgmann, R., Dzurisin, D., Lisowski, M., Masterlark, T., Owen, S., et al. (2006). Constraints on the mechanism of long-term, steady subsidence at Medicine Lake volcano, northern California, from GPS, levelling and InSAR. Journal of Volcanology and Geothermal Research, 150(1), 55–78.CrossRefGoogle Scholar
  59. Pyle, D. M., Mather, T. A., & Biggs, J. (2013). Remote sensing of volcanoes and volcanic processes: Integrating observation and modelling-introduction. Geological Society, London, Special Publications, 380(1), 1–13.CrossRefGoogle Scholar
  60. Riddick, S. N., & Schmidt, D. A. (2011). Time-dependent changes in volcanic inflation rate near three sisters, Oregon, revealed by InSAR. Geochemistry, Geophysics, Geosystems, 12(12), Q12005.CrossRefGoogle Scholar
  61. Riddick, S. N., Schmidt, D. A., & Deligne, N. I. (2012). An analysis of terrain properties and the location of surface scatteres from persistent scatterer interferometry. ISPRS Journal of Photogrammetry and Remote Sensing, 73, 50–57.CrossRefGoogle Scholar
  62. Ritter, J. R. R., & Evans, J. R. (1997). Deep structure of Medicine Lake volcano. California. Tectonophysics, 275(1), 221–241.CrossRefGoogle Scholar
  63. Rosen, P., Hensley, S., Peltzer, G., & Simons, M. (2004). Updated repeat orbit interferometry package released. EOS, Transactions of the AGU, 85(5), 47.CrossRefGoogle Scholar
  64. Rosen, P. A., Hensley, S., Zebker, H. A., & Webb, F. H. (1996). Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research, 101(E10), 23109–23125.CrossRefGoogle Scholar
  65. Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., et al. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382.CrossRefGoogle Scholar
  66. Segall, P. (2010). Earthquake and volcano deformation. Princeton, New Jersey, US: Princeton University Press.CrossRefGoogle Scholar
  67. Seymour, M., & Cumming, I. (1994). Maximum likelihood estimation for SAR interferometry. Institute of Electrical and Electronics Engineers, Piscataway, NJ (pp. 2272–2275).Google Scholar
  68. Sparks, R. S. J., Biggs, J., & Neuberg, J. W. (2012). Monitoring volcanoes. Science, 335(6074), 1310–1311.CrossRefGoogle Scholar
  69. Turcotte, D. L., & Schubert, G. (1982). Geodynamics. Cambridge, UK: Cambridge University Press.Google Scholar
  70. Wadge, G., Zhu, M., Holley, R. J., James, I. N., Clark, P. A., Wang, C., et al. (2010). Correction of atmospheric delay effects in radar interferometry using a nested mesoscale atmospheric model. Journal of Applied Geophysics, 72(2), 141–149.CrossRefGoogle Scholar
  71. Wang, H., & Wright, T. J. (2012). Satellite geodetic imaging reveals internal deformation of western Tibet. Geophysical Research Letters, 39(7), L07303.Google Scholar
  72. Wang, H., Wright, T. J., & Biggs, J. (2009). Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophysical Research Letters, 36(3), L03302.Google Scholar
  73. Wang, H., Wright, T. J., Yu, Y., Lin, H., Jiang, L., Li, C., et al. (2012). InSAR reveals coastal subsidence in the Pearl River Delta. China. Geophysical Journal International, 191(3), 1119–1128.Google Scholar
  74. Wright, T., Lu, Z., Wicks, C. (2004a) Constraining the slip distribution and fault geometryof the Mw 7.9, 3 November 2002, Denali Fault earthquake with interferometric synthetic aperture radar and Global Positioning System Data. Bulletin of the Seismological Society of America, 94(6B), S175–S189.Google Scholar
  75. Wright, T. J., Parsons, B. E., & Lu, Z. (2004b). Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters, 31(1), L01607.CrossRefGoogle Scholar
  76. Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950–959.CrossRefGoogle Scholar
  77. Zebker, H., Rosen, P., & Goldstein, R. M. (1994). On the derivation of co-seismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research, 99(B10), 19617–19634.CrossRefGoogle Scholar
  78. Zucca, J. J., Fuis, G. S., Milkereit, B., Mooney, W. D., & Catchings, R. D. (1986). Crustal structure of northeastern California. Journal of Geophysical Research, 91(B7), 7359–7382.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin UniversityPerthAustralia

Personalised recommendations