Skip to main content

Investigating Long-Term Subsidence at Medicine Lake Volcano, CA, Using Multi Temporal InSAR

  • Chapter
  • First Online:
InSAR Observations of Ground Deformation

Part of the book series: Springer Theses ((Springer Theses))

  • 851 Accesses

Abstract

Long-term volcanic subsidence provides insight into inter-eruptive processes, which comprise the longest portion of the eruptive cycle. Ground based geodetic surveys of Medicine Lake Volcano (MLV), northern CA, document subsidence at rates of \({\sim }-\)10 mm/yr between 1954 and 2004. The long observation period plus the duration and stable magnitude of this signal presents an ideal opportunity to study long-term volcanic deformation, but this first requires accurate knowledge of the geometry and magnitude of the source. Best-fitting analytical source models to past leveling and GPS datasets show conflicting source parameters - primarily the model depth. To overcome this, we combine multiple tracks of InSAR data, each with a different look angle, to improve upon the spatial resolution of ground based measurements. We compare the results from InSAR to those of past geodetic studies, extending the geodetic record to 2011 and demonstrating that subsidence at MLV continues at \({\sim }-\)10 mm/yr. Using geophysical inversions, we obtain the best-fitting analytical source model - a sill located at 9–10 km depth beneath the caldera. This model geometry is similar to those of past studies, providing a good fit to the high spatial density of InSAR measurements, whilst accounting for the high ratio of vertical to horizontal deformation derived from InSAR and recorded by existing leveling and GPS datasets. We discuss possible causes of subsidence and show that this model supports the hypothesis that deformation at MLV is driven by tectonic extension, gravitational loading, plus a component of volume loss at depth, most likely due to cooling and crystallisation within the intrusive complex that underlies the edifice. Past InSAR surveys at MLV, and throughout the Cascades, are of variable success due to dense vegetation, snow cover and atmospheric artefacts. In this study, we demonstrate how InSAR may be successfully used in this setting by applying a suite of multi temporal analysis methods that account for atmospheric and orbital noise sources. These methods include: a stacking strategy based upon the noise characteristics of each dataset; pixel-wise rate-map formation (\(\pi \)-RATE); and persistent scatterer InSAR (StaMPS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amelung, F., & Bell, J. (2003). Interferometric synthetic aperture radar observations of the 1994 Double Spring Flat, Nevada, earthquake (M5.9): Main shock accompanied by triggered slip on a conjugate fault. Journal of Geophysical Research, 108(B9), 2433.

    Article  Google Scholar 

  • Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., & De Natale, G. (2006). Evidence for fluid migration as the source of deformation at Campi Flegrei caldera, (Italy). Geophysical Research Letters, 33, L01307.

    Article  Google Scholar 

  • Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375–2383.

    Article  Google Scholar 

  • Biggs, J., Wright, T., Lu, Z., & Parsons, P. (2007). Multi-interferogram method for measuring inter seismic deformation: Denali Fault, Alaska. Geophysical Journal International, 170, 1165–1179.

    Article  Google Scholar 

  • Biggs, J., Anthony, E. Y., & Ebinger, C. J. (2009a). Multiple inflation and deflation events at Kenyan volcanoes. East African Rift. Geology, 37(11), 979–982.

    Google Scholar 

  • Biggs, J., Robinson, D. P., & Dixon, T. H. (2009b). The 2007 Pisco, Peru, earthquake (M8.0): seismology and geodesy. Geophysical Journal International, 176, 657–669.

    Article  Google Scholar 

  • Biggs, J., Lu, Z., Fournier, T., & Freymueller, J. T. (2010). Magma flux at Okmok Volcano, Alaska, from a joint inversion of continuous GPS, campaign GPS and interferometric synthetic aperture radar. Journal of Geophysical Research, 115, B12401.

    Article  Google Scholar 

  • Biggs, J., Ebmeier, S. K., Aspinall, W. P., Lu, Z., Pritchard, M. E., Sparks, R. S. J., et al. (2014). Global link between deformation and volcanic eruption quantified by satellite imagery. Nature Communications, 5, 3471.

    Article  Google Scholar 

  • Blakely, R. J., Christiansen, R. L., Guffanti, M., Wells, R. E., Donnelly-Nolan, J. M., Muffler, L. J. P., et al. (1997). Gravity anomalies, Quaternary vents, and Quaternary faults in the southern Cascade Range, Oregon and California; implications for arc and backarc evolutiony. Journal of Geophysical Research, 102, 22513–22527.

    Article  Google Scholar 

  • Caricchi, L., Biggs, J., Annen, C., & Ebmeier, S. (2014). The influence of cooling, crystallisation and re-melting on the interpretation of geodetic signals in volcanic systems. Earth and Planetary Science Letters, 388, 166–174.

    Article  Google Scholar 

  • Cayol, V., & Cornet, F. H. (1998). Effects of topography on the interpretation of the deformation field of prominent volcanoes: Application to Etna. Geophysical Research Letters, 25(11), 1979–1982.

    Article  Google Scholar 

  • Chaussard, E., Amelung, F., & Aoki, Y. (2013). Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. Journal of Geophysical Research, 118(8), 3957–3969.

    Google Scholar 

  • de Zeeuz-van Dalfsen, E., Pedersen, R., Hooper, A., & Sigmundsson, F. (2012). Subsidence of Askja caldera 2000–2009: Modelling of deformation processes at an extensional plate boundary constrained by time series InSAR analysis. Journal of Volcanology and Geothermal Research, 213, 72–82.

    Article  Google Scholar 

  • Doin, M.-P., Lasserre, C., Peltzer, G., Cavalie, O., & Doubre, C. (2009). Correction of stratified atmospheric delays in SAR interferometry: Validation with global atmospheric models. Journal of Applied Geophysics, 69, 35–50.

    Article  Google Scholar 

  • Donnelly-Nolan, J. M. (1988). A magmatic model of Medicine Lake volcano, California. Journal of Volcanology and Geothermal Research, 93, 4412–4420.

    Google Scholar 

  • Donnelly-Nolan, J. M. (2010). Geologic map of Medicine Lake volcano, northern California. U.S. Geological Survey Scientific Investigations Map 2927, scale 1:50,000.

    Google Scholar 

  • Donnelly-Nolan, J. M., & Lanphere, M.A. (2005). Argon dating at and near Medicine Lake volcano, California: Results and data. U.S. Geological Survey Open-File Report (2005–1416).

    Google Scholar 

  • Donnelly-Nolan, J. M., Champion, D. E., Miller, C. D., Grove, T. L., & Trimble, D. A. (1990). Post- 11,000-year volcanism at Medicine Lake Volcano, Cascade Range, Northern California. Journal of Geophysical Research, 95(B12), 19693–19704.

    Article  Google Scholar 

  • Donnelly-Nolan, J. M., Grove, T. L., Lanphere, M. A., & Champion, D. E. (2008). Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades. Journal of Volcanology and Geothermal Research, 177, 313–328.

    Article  Google Scholar 

  • Dzurisin, D. (2007). Volcano deformation: Geodetic monitoring techniques. Chichester, UK: Springer-Praxis.

    Google Scholar 

  • Dzurisin, D., Donnelly-Nolan, J. M., Evans, J. R., & Walter, S. R. (1991). Crustal subsidence, seismicity, and structure near Medicine Lake volcano. California. Journal of Geophysical Research, 96(B10), 16319–16333.

    Article  Google Scholar 

  • Dzurisin, D., Wicks, J. C., & Thatcher, W. (1999). Renewed uplift at the Yellowstone Caldera measured by levelling surveys and satellite radar interferometry. Bulletin of Volcanology, 61(6), 349–355.

    Article  Google Scholar 

  • Dzurisin, D., Poland, M. P., & Bürgmann, R. (2002). Steady subsidence of Medicine Lake Volcano, Northern California, revealed by repeated levelling surveys. Journal of Geophysical Research, 107(B12), 2372.

    Article  Google Scholar 

  • Ebmeier, S. K., Biggs, J., Mather, T. A., & Amelung, F. (2013b). On the lack of InSAR observations of magmatic deformation at Central American volcanoes. Journal of Geophysical Research, 118(5), 2571–2585.

    Google Scholar 

  • Elliott, J. R., Biggs, J., Parsons, P., & Wright, T. J. (2008). InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophysical Research Letters, 35(12), L12309.

    Article  Google Scholar 

  • Evans, J. R., & Zucca, J. J. (1998). Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake Volcano, Northern California Cascade Range. Journal of Geophysical Research, 93(B12), 15016–15036.

    Article  Google Scholar 

  • Farr, T. G., & Kobrick, M. (2000). Shuttle radar topography mission produces a wealth of data. Eos, Transactions American Geophysical Union, 81(48), 583–585.

    Article  Google Scholar 

  • Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20.

    Article  Google Scholar 

  • Fialko, Y., Khazan, Y., & Simons, M. (2001a). Deformation due to a pressurised horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophysical Journal International, 146(1), 181–190.

    Article  Google Scholar 

  • Finn, C., & Williams, D. L. (1982). Gravity evidence for a shallow intrusion under Medicine Lake Volcano. California. Geology, 10(10), 503–507.

    Article  Google Scholar 

  • Foster, J., Brooks, B., Cherubini, T., Shacat, C., Businger, S., & Werner, C. L. (2006). Mitigating atmospheric noise for InSAR using a high resolution weather model. Geophysical Research Letters, 33(16), L16304.

    Article  Google Scholar 

  • Fuis, G. S., Zucca, J. J., Mooney, W. D., & Milkereit, B. (1987). A geological interpretation of seismic refraction results in north-eastern California. Bulletin of the Geological Society of America, 98(1), 53–65.

    Article  Google Scholar 

  • Garthwaite, M. C., Wang, H., & Wright, T. J. (2013). Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR. Journal of Geophysical Research, 118(9), 5071–5083.

    Google Scholar 

  • Goldstein, R., & Werner, C. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21), 4035–4038.

    Article  Google Scholar 

  • Goldstein, R., Zebker, H., & Werner, C. (1988). Satellite radar interferometry: Two dimensional phase unwrapping. Radio Science, 23(4), 713–720.

    Article  Google Scholar 

  • Gourmelen, N., Amelung, F., & Lanari, R. (2010). Interferometric synthetic aperture radar-GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone. Journal of Geophysical Research, 115(B9), B09408.

    Article  Google Scholar 

  • Hamling, I. J., Wright, T. J., Calais, E., Lewi, E., & Fukahata, Y. (2014). InSAR observations of post-rifting deformation around the Dabbahu rift segment, Afar. Ethiopia. Geophysical Journal International, 197(1), 33–49.

    Article  Google Scholar 

  • Hanssen, R. F. (2001). Radar interferometry: Data interpretation and analysis. Norwell, MA, US: Kluwer Academic.

    Book  Google Scholar 

  • Heiken, G. (1978). Plinian-type eruptions in the Medicine Lake Highland, California, and the nature of the underlying magma. Journal of Volcanology and Geothermal Research, 4(3), 375–402.

    Article  Google Scholar 

  • Hildreth, W. (2007). Quaternary magmatism in the Cascades - geological perspectives. U.S. Geological Survey Professional Paper (1744).

    Google Scholar 

  • Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo. Galápagos. Journal of Geophysical Research, 112(B7), B07407.

    Google Scholar 

  • Hooper, A., Pedersen, R., & Sigmundsson, F. (2009). Constraints on magma intrusion at Eyjafjallajökull and Katla volcanoes in Iceland, from time series SAR interferometry. The VOLUME project-volcanoes: understanding subsurface mass movement (pp. 13–24) Dublin: University College.

    Google Scholar 

  • Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), 1–5.

    Article  Google Scholar 

  • Johanson, I. A., & Bürgmann, R. (2005). Creep and quakes on the northern transition zone of the San Andreas fault from GPS and InSAR data. Geophysical Research Letters, 32(14), L14306.

    Article  Google Scholar 

  • Jónsson, S., Zebker, H., Segall, P., & Amelung, F. (2002). Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bulletin of the Seismological Society of America, 92(4), 1377–1389.

    Article  Google Scholar 

  • Li, Z. W., Ding, X. L., Huang, C., Wadge, G., & Zheng, D. W. (2006b). Modeling of atmospheric effects on InSAR measurements by incorporating terrain elevation information. Journal of Atmospheric and Solar-Terrestrial Physics, 68(11), 1189–1194.

    Article  Google Scholar 

  • Lohman, R., & Simons, M. (2005). Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochemistry, Geophysics, Geosystems, 6(1), Q01007.

    Article  Google Scholar 

  • Lowenstern, J. B., Donnelly-Nolan, J., Wooden, J. L., & Charlier, B. L. A. (2003). Volcanism, plutonism and hydrothermal alteration at Medicine Lake volcano, California. Proceedings, Twenty-Eighth Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California (p. 8).

    Google Scholar 

  • Lu, Z., & Dzurisin, D. (2014). InSAR Imaging of Aleutian Volcanoes: Monitoring a Volcanic Arc from Space. Chichester, UK: Springer-Praxis.

    Book  Google Scholar 

  • Lyons, S., & Sandwell, D. (2003). Fault creep along the southern San Andreas from InSAR, permanent scatterers and stacking. Journal of Geophysical Research, 108(B1), 2047–2070.

    Article  Google Scholar 

  • Massonnet, D., Feigl, K. L., Vadon, H., & Rossi, M. (1996). Coseismic deformation field of the M \(=\) 6.7 Northridge, California earthquake of January 17, 1994 recorded by two radar satellites using interferometry. Geophysical Research Letters, 23(9), 969–972.

    Google Scholar 

  • Mogi, K. (1958). Relations between eruptions of various volcanoes and the deformations of the ground surfaces around them. Bulletin of the Earthquake Research Institute of the University of Tokyo, 36, 99–134.

    Google Scholar 

  • Ofeigsson, B. G., Hooper, A., Sigmundsson, F., Sturkell, E., & Grapenthin, R. (2011). Deep magma storage at Hekla volcano, Iceland, revealed by InSAR time series analysis. Journal of Geophysical Research, 116(B5), B05401.

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Parks, M. M., Biggs, J., Mather, T. A., Pyle, D. M., Amelung, F., Monsalve, M. L., et al. (2011). Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (2006–2009). Journal of Volcanology and Geothermal Research, 202(3), 228–240.

    Google Scholar 

  • Pinel, V., Hooper, A., De la Cruz-Reyna, S., Reyes-Davila, G., Doin, M.-P., & Bascou, P. (2011). The challenging retrieval of the displacement field from InSAR data for andesitic stratovolcanoes: Case study of Popocatepetl and Colima Volcano, Mexico. Journal of Volcanology and Geothermal Research, 200(1), 49–61.

    Article  Google Scholar 

  • Poland, M. P., & Lu, Z. (2008). Radar interferometry observations of surface displacements during pre- and coeruptive periods at Mount St. Helens, Washington, 1992–2005. U.S. geological survey professional paper (Vol. 1750, pp. 361–382).

    Google Scholar 

  • Poland, M. P., Bürgmann, R., Dzurisin, D., Lisowski, M., Masterlark, T., Owen, S., et al. (2006). Constraints on the mechanism of long-term, steady subsidence at Medicine Lake volcano, northern California, from GPS, levelling and InSAR. Journal of Volcanology and Geothermal Research, 150(1), 55–78.

    Article  Google Scholar 

  • Pyle, D. M., Mather, T. A., & Biggs, J. (2013). Remote sensing of volcanoes and volcanic processes: Integrating observation and modelling-introduction. Geological Society, London, Special Publications, 380(1), 1–13.

    Article  Google Scholar 

  • Riddick, S. N., & Schmidt, D. A. (2011). Time-dependent changes in volcanic inflation rate near three sisters, Oregon, revealed by InSAR. Geochemistry, Geophysics, Geosystems, 12(12), Q12005.

    Article  Google Scholar 

  • Riddick, S. N., Schmidt, D. A., & Deligne, N. I. (2012). An analysis of terrain properties and the location of surface scatteres from persistent scatterer interferometry. ISPRS Journal of Photogrammetry and Remote Sensing, 73, 50–57.

    Article  Google Scholar 

  • Ritter, J. R. R., & Evans, J. R. (1997). Deep structure of Medicine Lake volcano. California. Tectonophysics, 275(1), 221–241.

    Article  Google Scholar 

  • Rosen, P., Hensley, S., Peltzer, G., & Simons, M. (2004). Updated repeat orbit interferometry package released. EOS, Transactions of the AGU, 85(5), 47.

    Article  Google Scholar 

  • Rosen, P. A., Hensley, S., Zebker, H. A., & Webb, F. H. (1996). Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research, 101(E10), 23109–23125.

    Article  Google Scholar 

  • Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., et al. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382.

    Article  Google Scholar 

  • Segall, P. (2010). Earthquake and volcano deformation. Princeton, New Jersey, US: Princeton University Press.

    Book  Google Scholar 

  • Seymour, M., & Cumming, I. (1994). Maximum likelihood estimation for SAR interferometry. Institute of Electrical and Electronics Engineers, Piscataway, NJ (pp. 2272–2275).

    Google Scholar 

  • Sparks, R. S. J., Biggs, J., & Neuberg, J. W. (2012). Monitoring volcanoes. Science, 335(6074), 1310–1311.

    Article  Google Scholar 

  • Turcotte, D. L., & Schubert, G. (1982). Geodynamics. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Wadge, G., Zhu, M., Holley, R. J., James, I. N., Clark, P. A., Wang, C., et al. (2010). Correction of atmospheric delay effects in radar interferometry using a nested mesoscale atmospheric model. Journal of Applied Geophysics, 72(2), 141–149.

    Article  Google Scholar 

  • Wang, H., & Wright, T. J. (2012). Satellite geodetic imaging reveals internal deformation of western Tibet. Geophysical Research Letters, 39(7), L07303.

    Google Scholar 

  • Wang, H., Wright, T. J., & Biggs, J. (2009). Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophysical Research Letters, 36(3), L03302.

    Google Scholar 

  • Wang, H., Wright, T. J., Yu, Y., Lin, H., Jiang, L., Li, C., et al. (2012). InSAR reveals coastal subsidence in the Pearl River Delta. China. Geophysical Journal International, 191(3), 1119–1128.

    Google Scholar 

  • Wright, T., Lu, Z., Wicks, C. (2004a) Constraining the slip distribution and fault geometryof the Mw 7.9, 3 November 2002, Denali Fault earthquake with interferometric synthetic aperture radar and Global Positioning System Data. Bulletin of the Seismological Society of America, 94(6B), S175–S189.

    Google Scholar 

  • Wright, T. J., Parsons, B. E., & Lu, Z. (2004b). Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters, 31(1), L01607.

    Article  Google Scholar 

  • Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950–959.

    Article  Google Scholar 

  • Zebker, H., Rosen, P., & Goldstein, R. M. (1994). On the derivation of co-seismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research, 99(B10), 19617–19634.

    Article  Google Scholar 

  • Zucca, J. J., Fuis, G. S., Milkereit, B., Mooney, W. D., & Catchings, R. D. (1986). Crustal structure of northeastern California. Journal of Geophysical Research, 91(B7), 7359–7382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Laura Parker .

Appendix

Appendix

See Figs. 2.9, 2.10 and 2.11.

Fig. 2.9
figure 9

Time versus perpendicular baseline plots for InSAR datasets at Medicine Lake Volcano. Interferograms are those with >30 % coherence at the summit of the volcano. Map shows the coverage of each InSAR track with respect to the extent of Medicine Lake Volcano lavas

Fig. 2.10
figure 10

Example of incoherence, orbital phase ramp and turbulent atmospheric noise commonly observed at Medicine Lake Volcano in ENVISAT descending data. The outline of the extent of Medicine Lake Volcano lavas is shown by long-dashed line. The caldera is shown by the short-dashed line and major surgical lava flows are shown by solid black lines

Fig. 2.11
figure 11

Histograms for each model parameter from Monte Carlo error analysis. Histograms are used to calculate the 1\(\sigma \) error bounds on the source parameters

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Parker, A.L. (2017). Investigating Long-Term Subsidence at Medicine Lake Volcano, CA, Using Multi Temporal InSAR. In: InSAR Observations of Ground Deformation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-39034-5_2

Download citation

Publish with us

Policies and ethics