• Amy Laura ParkerEmail author
Part of the Springer Theses book series (Springer Theses)


Measurements of ground deformation have been used by geodesists to investigate natural and man-made phenomena since the 19th century. Since the early 1990s, Interferometric Synthetic Aperture Radar (InSAR) has changed the way that geodesists view the Earth, facilitating deformation monitoring in remote and inaccessible locations, and providing insight into spatially and temporally complex processes. Unsurprisingly, InSAR observations have pushed forth a new era in volcano deformation studies from both a monitoring and research perspective. InSAR observations of volcanic ground deformation enable the detection of subsurface magma, and therefore play a key role in eruptive hazard assessments. However, these observations have also shed new light on all aspects of volcanic behaviour, contributing to our understanding of the eruption cycle, hydrothermal systems and the formation of continental crust. One of the most significant achievements of volcano InSAR has been the identification and characterisation of magma inputs into the crust that would have otherwise gone unnoticed (e.g. Lu and Dzurisin 2014). Such observations of magma movement and other slow, long-term processes are crucial in determining how magmatic plumbing develops and evolves beneath a volcano (Dzurisin 2003; Cashman and Biggs 2014), but the mechanism responsible is often ambiguous.


Digital Elevation Model Synthetic Aperture Radar Synthetic Aperture Radar Image Ground Deformation Interferometric Synthetic Aperture Radar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, K., Lisowski, M., & Segall, P. (2010). Cyclic ground tilt associated with the 2004–2008 eruption of Mount St. Helens. Journal of Geophysical Research, 115(B11).Google Scholar
  2. Atwater, T. (1970). Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin, 81(12), 3513–3536.CrossRefGoogle Scholar
  3. Bacon, C. R., Bruggman, P. E., Christiansen, R. L., Clynne, M. A., Donnelly-Nolan, J. M., & Hildreth, W. (1997). Primitive magmas at five Cascades volcanic fields: Melts from hot, heterogeneous sub-arc mantle. Canadian Mineralogist, 35, 397–424.Google Scholar
  4. Baker, S., & Amelung, F. (2013). Top-dow inflation and deflation at the summit of Kilauea Volcano, Hawaii observed with InSAR. Journal of Geophysical Research, 117(B12406).Google Scholar
  5. Baker, M. B., Grove, T. L., Kinzler, R. J., Donnelly-Nolan, J. M., & Wandless, G. A. (1991). Origin of compositional zonation (high-alumina basalt to basaltic andesite) in the Giant Crater Lava Field, Medicine Lake Volcano, northern California. Journal of Geophysical Research, 96(B13), 21819–21842.CrossRefGoogle Scholar
  6. Baker, M. B., Grove, T. L., & Price, R. (1994). Primitive basalts and andesites from the Mt. Shasta region, N. California: Products of varying melt fraction and water content. Contributions to Mineralogy and Petrology, 118(2), 111–129.CrossRefGoogle Scholar
  7. Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375–2383.CrossRefGoogle Scholar
  8. Biggs, J., Ebmeier, S. K., Aspinall, W. P., Lu, Z., Pritchard, M. E., Sparks, R. S. J., & Mather, T. A. (2014). Global link between deformation and volcanic eruption quantified by satellite imagery. Nature Communications, 5, 3471.Google Scholar
  9. Biggs, J., Anthony, E. Y., & Ebinger, C. J. (2009a). Multiple inflation and deflation events at Kenyan volcanoes East African rift. Geology, 37(11), 979–982.CrossRefGoogle Scholar
  10. Biggs, J., Robinson, D. P., & Dixon, T. H. (2009b). The 2007 Pisco, Peru, earthquake (M8.0): Seismology and geodesy. Geophysical Journal International, 176, 657–669.CrossRefGoogle Scholar
  11. Blakely, R. J., Christiansen, R. L., Guffanti, M., Wells, R. E., Donnelly-Nolan, J. M., Muffler, L. J. P., et al. (1997). Gravity anomalies, Quaternary vents and Quaternary faults in the southern Cascade Range, Oregon and California; implications for arc and backarc evolutiony. Journal of Geophysical Research, 102, 22513–22527.CrossRefGoogle Scholar
  12. Bostock, M. G., & VanDecar, J. C. (1995). Upper mantle structure of the northern Cascadia subduction zone. Canadian Journal of Earth Sciences, 32(1), 1–12.CrossRefGoogle Scholar
  13. Brandon, A. D., & Draper, D. S. (1996). Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington. USA. Geochimica et Cosmochimica Acta, 60(10), 1739–1749.CrossRefGoogle Scholar
  14. Bürgmann, R., Rosen, P. A., & Fielding, E. J. (2000). Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annual Review of Earth and Planetary Sciences, 28(1), 169–209.CrossRefGoogle Scholar
  15. Burkart, B., & Self, S. (1985). Extension and rotation of crustal blocks in northern Central America and effect on the volcanic arc. Geology, 13(1), 22–26.CrossRefGoogle Scholar
  16. Cashman, K., & Biggs, J. (2014). Common processes at unique volcanoes—a volcanological conundrum. Frontiers in Earth Science, 2, 28.CrossRefGoogle Scholar
  17. Chadwick, W. W., Iwatsubo, E. Y., Swanson, D. A., & Ewert, J. W. (1985). Measurements of Slope Distances and Vertical Angles at Mount Baker and Mount Rainier, Washington, Mount Hood and Crater Lake, Oregon and Mount Shasta and Lassen Peak, California, 1980–1984. U.S. Geological Survey Open File Report (85-205).Google Scholar
  18. Chaussard, E., & Amelung, F. (2012). Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophysical Research Letters, 39(21).Google Scholar
  19. Chaussard, E., & Amelung, F. (2014). Regional controls on magma ascent and storage in volcanic arcs. Geochemistry, Geophysics, Geosystems, 15(4), 1407–1418.CrossRefGoogle Scholar
  20. Chiodini, G., Vandemeulebrouck, J., Caliro, S., D’Auria, L., De Martino, P., Mangiacapra, A., et al. (2015). Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth and Planetary Science Letters, 414, 58–67.CrossRefGoogle Scholar
  21. Clynne, M. A., Robinson, J. E., Nathenson, M., & Muffler, L. J. P. (2012). Volcano Hazards Assessment for the Lassen Region, Northern California. U.S.Geological Survey Scientific Investigations Report 2012-5176-A, 56 p.Google Scholar
  22. Crider, J. G., Frank, D., Malone, S. D., Poland, M. P., Werner, C., & Caplan-Auerbach, J. (2011). Magma at depth: A retrospective analysis of the 1975 unrest at Mount Baker, Washington USA. Bulletin of Volcanology, 73(2), 175–189.CrossRefGoogle Scholar
  23. Crosson, R. S., & Owens, T. J. (1987). Slab geometry of the Cascadia subduction zone beneath Washington from earthquake hypocenters and teleseismic converted waves. Geophysical Research Letters, 14(8), 824–827.CrossRefGoogle Scholar
  24. Curlander, J. C., & McDonough, R. N. (1991). Synthetic aperture radar: Systems and signal processing. New York: Wiley-Intersci.Google Scholar
  25. Dietterich, H. R., Poland, M. P., Schmidt, D. A., Cashman, K. V., Sherrod, D. R., & Espinosa, A. T. (2012). Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawaii, with synthetic aperture radar coherence. Geochemistry, Geophysics, Geosystems, 13(5).Google Scholar
  26. Donnelly-Nolan, J. M., Champion, D. E., Grove, T. L., & an Baker, M. B., Taggart Jr, J. E., Bruggman, P. E., (1991). The Giant Crater lava field: geology and geochemistry of a compositionally zoned, high-alumina basalt to basaltic andesite eruption at Medicine Lake volcano. California. Journal of Geophysical Research, 96(B13), 21843–21863.Google Scholar
  27. Donnelly-Nolan, J. M. (1988). A magmatic model of medicine lake volcano, California. Journal of Volcanology and Geothermal Research, 93, 4412–4420.Google Scholar
  28. Dzurisin, D. (2003). A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Reviews of Geophysics, 41(1).Google Scholar
  29. Dzurisin, D., Johnson, D. J., & Symonds, R. B. (1983). Dry Tilt Network at Mount Rainier, Washington. U.S. Geological Survey Fact Sheet (83-277), 18 p.Google Scholar
  30. Dzurisin, D., Poland, M. P., & Bürgmann, R. (2002). Steady subsidence of Medicine Lake Volcano, Northern California, revealed by repeated levelling surveys. Journal of Geophysical Research, 107(B12).Google Scholar
  31. Dzurisin, D. (1999). Results of repeated leveling surveys at Newberry Volcano, Oregon and near Lassen Peak Volcano California. Bulletin of Volcanology, 61(1–2), 83–91.CrossRefGoogle Scholar
  32. Dzurisin, D. (2007). Volcano deformation: Geodetic monitoring techniques. Chichester, UK: Springer-Praxis.Google Scholar
  33. Dzurisin, D., Donnelly-Nolan, J. M., Evans, J. R., & Walter, S. R. (1991). Crustal subsidence, seismicity and structure near Medicine Lake volcano California. Journal of Geophysical Research, 96(B10), 16319–16333.CrossRefGoogle Scholar
  34. Dzurisin, D., Lisowski, M., & Wicks, C. W. (2009). Continuing inflation at Three Sisters volcanic center, central Oregon Cascade Range, USA, from GPS, leveling and InSAR observations. Bulletin of Volcanology, 71(10), 1091–1110.CrossRefGoogle Scholar
  35. Dzurisin, D., Lisowski, M., Wicks, C. W., Poland, M. P., & Endo, E. T. (2006). Geodetic observations and modeling of magmatic inflation at the Three Sisters volcanic center, central Oregon Cascade Range, USA. Journal of Volcanology and Geothermal Research, 150(1), 35–54.CrossRefGoogle Scholar
  36. Ebmeier, S. K., Biggs, J., Mather, T. A., & Amelung, F. (2013b). On the lack of InSAR observations of magmatic deformation at Central American volcanoes. Journal of Geophysical Research, 118(5), 2571–2585.Google Scholar
  37. Ebmeier, S. K., Biggs, J., Muller, C., & Avard, G. (2014). Thin-skinned mass-wasting responsible for widespread deformation at Arenal volcano. Frontiers in Earth Science, 2, 35.CrossRefGoogle Scholar
  38. Elachi, C. (1988). Spaceborne radar remote sensing: Applications and techniques. New York, US: IEEE Press.Google Scholar
  39. Ewert, J. W., Guffanti, M., & Murray, T. L. (2005). An assessment of volcanic threat and monitoring capabilities in the United States: framework for a National Volcano Early Warning System NVEWS. U.S. Geological Survey Open File Report (2005-1164).Google Scholar
  40. Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., & Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3460–3470.CrossRefGoogle Scholar
  41. Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20.CrossRefGoogle Scholar
  42. Fialko, Y., Khazan, Y., & Simons, M. (2001a). Deformation due to a pressurised horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophysical Journal International, 146(1), 181–190.CrossRefGoogle Scholar
  43. Galloway, D. L., & Burbey, T. J. (2011). Review: regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459–1486.CrossRefGoogle Scholar
  44. Gardner, J. E., Rutherford, M., Carey, S., & Sigurdsson, H. (1995). Experimental constraints on pre-eruptive water contents and changing magma storage prior to explosive eruptions of Mount St Helens volcano. Bulletin of Volcanology, 57(1), 1–17.CrossRefGoogle Scholar
  45. Goldstein, R. M., Engelhardt, H., Kamb, B., & Frolich, R. M. (1993). Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science, 262(5139), 1525–1530.CrossRefGoogle Scholar
  46. Goldstein, R., Zebker, H., & Werner, C. (1988). Satellite radar interferometry: Two dimensional phase unwrapping. Radio Science, 23(4), 713–720.CrossRefGoogle Scholar
  47. Grove, L. T., Donnelly-Nolan, J. M., & Housh, T. (1997). Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake Volcano N. California. Contributions to Mineralogy Petrology, 127, 205–223.CrossRefGoogle Scholar
  48. Guffanti, M., & Weaver, C. S. (1988). Distribution of late Cenozoic volcanic vents in the Cascade Range: Volcanic arc segmentation and regional tectonic considerations. Journal of Geophysical Research, 93(B6), 6513–6529.CrossRefGoogle Scholar
  49. Hammond, W. C., & Thatcher, W. (2005). Northwest Basin and Range tectonic deformation observed with the Global Positioning System, 1999–2003. Journal of Geophysical Research, 110(B10).Google Scholar
  50. Hanssen, R. F. (2001). Radar interferometry: Data interpretation and analysis. Norwell, MA, US: Kluwer Acad.CrossRefGoogle Scholar
  51. Hickey, J., Gottsmann, J., & Potro, R. (2013). The large-scale surface uplift in the Altiplano-Puna region of Bolivia: A parametric study of source characteristics and crustal rheology using finite element analysis. Geochemistry, Geophysics, Geosystems, 14(3), 540–555.CrossRefGoogle Scholar
  52. Hildreth, W., 2007. Quaternary magmatism in the Cascades - geological perspectives. U.S. Geological Survey Professional Paper (1744).Google Scholar
  53. Hildreth, W. (1981). Gradients in silicic magma chambers: Implications for lithospheric magmatism. Journal of Geophysical Research, 86(B11), 10153–10192.CrossRefGoogle Scholar
  54. Hodge, B. E., & Crider, J. G. (2010). Investigating mechanisms of edifice deflation 1981–2007, at Mount Baker volcano, Washington, United States. Journal of Geophysical Research, 105, 25671–25684.Google Scholar
  55. Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16).Google Scholar
  56. Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research, 112(B7),Google Scholar
  57. Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23),Google Scholar
  58. Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514, 1–13.CrossRefGoogle Scholar
  59. Ingebritsen, S. E., & Mariner, R. H. (2010). Hydrothermal heat discharge in the Cascade Range, northwestern United States. Journal of Volcanology and Geothermal Research, 196(3), 208–218.CrossRefGoogle Scholar
  60. Janik, C. J., & McLaren, M. K. (2010). Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system. Journal of Volcanology and Geothermal Research, 189(3), 257–277.CrossRefGoogle Scholar
  61. Jónsson, S. (2009). Stress interaction between magma accumulation and trapdoor faulting on Sierra Negra volcano Galápagos. Tectonophysics, 471(1), 36–44.CrossRefGoogle Scholar
  62. Lipman, P. W., & Mullineaux, D. R. E. (1981). The 1980 Eruptions of Mount St. Helens, Washington. U.S. Geological Survey Professional Paper, 1250, 844p.Google Scholar
  63. Lu, Z., & Dzurisin, D. (2014). InSAR imaging of Aleutian volcanoes: Monitoring a volcanic arc from space. Chichester, UK: Springer-Praxis.CrossRefGoogle Scholar
  64. Massonnet, D., Feigl, K. L., Vadon, H., Rossi, M., 1996. Coseismic deformation field of the M = 6.7 Northridge, California earthquake of January 17. (1994). recorded by two radar satellites using interferometry. Geophysical Research Letters, 23(9), 969–972.Google Scholar
  65. Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36(4), 44–500.CrossRefGoogle Scholar
  66. Mastin, L., Lisowski, M., Roeloffs, E., & Beeler, N. (2009). Improved constraints on the estimated size and volatile content of the Mount St. Helens magma system from the 2004–2008 history of dome growth and deformation. Geophysical Research Letters, 36(L20304).Google Scholar
  67. McCaffrey, R., King, R. W., Payne, S. J., & Lancaster, M. (2013). Active tectonics of northwestern US inferred from GPS-derived surface velocities. Journal of Geophysical Research, 118(2), 709–723.Google Scholar
  68. McCaffrey, R., Qamar, A. I., King, R. W., Wells, R., Khazaradze, G., Williams, C. A., et al. (2007). Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophysical Journal International, 169(3), 1315–1340.CrossRefGoogle Scholar
  69. Mogi, K. (1958). Relations between eruptions of various volcanoes and the deformations of the ground surfaces around them. Bulletin of the Earthquake Research Institute of the University of Tokyo, 36, 99–134.Google Scholar
  70. Moran, S. C., (2004). Seismic Monitoring at Cascade Volcanic Centers, 2004 - Status and Recommendations. U.S. Geological Survey Scientific Investigations Report (2004-5211).Google Scholar
  71. Moran, S. C. (1994). Seismicity at Mount St. Helens, 1987–1992: Evidence for repressurization of an active magmatic system. Journal of Geophysical Research, 99(B3), 4341–4354.CrossRefGoogle Scholar
  72. Nichols, M. L., Malone, S. D., Moran, S. C., Thelen, W. A., & Vidale, J. E. (2011). Deep long-period earthquakes beneath Washington and Oregon volcanoes. Journal of Volcanology and Geothermal Research, 200, 116–128.CrossRefGoogle Scholar
  73. Ofeigsson, B. G., Hooper, A., Sigmundsson, F., Sturkell, E., & Grapenthin, R. (2011). Deep magma storage at Hekla volcano, Iceland, revealed by InSAR time series analysis. Journal of Geophysical Research, 116(B5), B05401.Google Scholar
  74. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  75. Pallister, J. S., Hoblitt, R. P., Crandell, D. R., & Mullineaux, D. R. (1992). Mount St. Helens a decade after the,. (1980). eruptions: Magmatic models, chemical cycles and a revised hazards assessment. Bulletin of Volcanology, 54(2), 126–146.Google Scholar
  76. Pallister, J. S., Thornber, C. R., Cashman, K. V., Clynne, M. A., Lowers, H. A., & Mandeville, C. W., et al. (2008). Petrology of the 2004–2006 Mount St. Helens lava dome-implications for magmatic plumbing and eruption triggering. U.S. Geological Survey Professional Paper 1750.Google Scholar
  77. Parker, A. L., Biggs, J., & Lu, Z. (2014). Investigating long-term subsidence at Medicine Lake Volcano, CA, using multi temporal InSAR. Geophysical Journal International, 199(2), 844–859.Google Scholar
  78. Parker, A. L., Biggs, J., Walters, R. J., Ebmeier, S. K., Wright, T. J., Teanby, N. A., et al. (2015). Systematic assessment of atmospheric uncertainties for InSAR data at volcanic arcs using large-scale atmospheric models: Application to the Cascade volcanoes, United States. Remote Sensing of Environment, 170, 102–114.CrossRefGoogle Scholar
  79. Pearse, J., & Fialko, Y. (2010). Mechanics of active magmatic intraplating in the Rio Grande Rift near Socorro, New Mexico. Journal of Geophysical Research, 115(B7).Google Scholar
  80. Pinel, V., Hooper, A., De la Cruz-Reyna, S., Reyes-Davila, G., Doin, M.-P., & Bascou, P. (2011). The challenging retrieval of the displacement field from InSAR data for andesitic stratovolcanoes: Case study of Popocatepetl and Colima Volcano, Mexico. Journal of Volcanology and Geothermal Research, 200(1), 49–61.CrossRefGoogle Scholar
  81. Pinel, V., Poland, M. P., & Hooper, A. (2014). Volcanology: Lessons learned from synthetic aperture radar imagery. Journal of Volcanology and Geothermal Research, 289, 81–113.CrossRefGoogle Scholar
  82. Plattner, C., Wdowinski, S., Dixon, T. H., & Biggs, J. (2010). Surface subsidence induced by the Crandall Canyon Mine (Utah) collapse: InSAR observations and elasto-plastic modelling. Geophysical Journal International, 183(3), 1089–1096.CrossRefGoogle Scholar
  83. Poland, M., Bawden, G., Lisowski, M., Dzurisin, D. (2004). Newly discovered subsidence at Lassen Peak, southern Cascade Range, California, from InSAR and GPS. [abs.]: Eos (American Geophysical Union Transactions) v. 85, Fall Meeting Supplement, abs. G51A-0068.Google Scholar
  84. Poland, M. P., Bürgmann, R., Dzurisin, D., Lisowski, M., Masterlark, T., Owen, S., et al. (2006). Constraints on the mechanism of long-term, steady subsidence at Medicine Lake volcano, northern California, from GPS, levelling and InSAR. Journal of Volcanology and Geothermal Research, 150(1), 55–78.CrossRefGoogle Scholar
  85. Poland, M. P., & Lu, Z. (2008). Radar Interferometry Observations of Surface Displacements During Pre- and Coeruptive Periods at Mount St. Helens, Washington, 1992–2005. U. S. Geological Survey Professional Paper, 1750, 361–382.Google Scholar
  86. Priest, G. R. (1990). Volcanic and tectonic evolution of the Cascade Volcanic Arc, central Oregon. Journal of Geophysical Research, 95(B12), 19583–19599.CrossRefGoogle Scholar
  87. Pritchard, M. E., & Simons, M. (2004a). An InSAR-based survey of volcanic deformation in the central Andes. Geochemistry, Geophysics, Geosystems, 5(2).Google Scholar
  88. Pyle, D. M., Mather, T. A., & Biggs, J. (2013). Remote sensing of volcanoes and volcanic processes: Integrating observation and modelling-introduction. Geological Society, London, Special Publications, 380(1), 1–13.CrossRefGoogle Scholar
  89. Riddick, S. N., & Schmidt, D. A. (2011). Time-dependent changes in volcanic inflation rate near Three Sisters, Oregon, revealed by InSAR. Geochemistry, Geophysics, Geosystems, 12(12).Google Scholar
  90. Rosen, P., Hensley, S., Peltzer, G., & Simons, M. (2004). Updated repeat orbit interferometry package released. EOS, Trans. AGU 85 (5).Google Scholar
  91. Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., et al. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382.CrossRefGoogle Scholar
  92. Rosen, P. A., Hensley, S., Zebker, H. A., & Webb, F. H. (1996). Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research, 101(E10), 23109–23125.CrossRefGoogle Scholar
  93. Ruscitto, D. M., Wallace, P. J., Johnson, E. R., Kent, A. J. R., & Bindeman, I. N. (2010). Volatile contents of mafic magmas from cinder cones in the central oregon high cascades: Implications for magma formation and mantle conditions in a hot arc. Earth and Planetary Science Letters, 298(1), 153–161.CrossRefGoogle Scholar
  94. Rutherford, M. J., Sigurdsson, H., Carey, S., & Davis, A. (1985). The May 18, 1980, eruption of Mount St. Helens: 1. Melt composition and experimental phase equilibria. Journal of Geophysical Research, 90(B4), 2929–2947.CrossRefGoogle Scholar
  95. Saar, M. O., & Manga, M. (2003). Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth and Planetary Science Letters, 214(3), 605–618.CrossRefGoogle Scholar
  96. Scandone, R., & Malone, S. D. (1985). Magma supply, magma discharge and readjustment of the feeding system of Mount St. Helens during 1980. Journal of Volcanology and Geothermal Research, 23(3), 239–262.CrossRefGoogle Scholar
  97. Schmidt, D. A., & Bürgmann, R. (2003). Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research, 108(B9),Google Scholar
  98. Segall, P. (2010). Earthquake and volcano deformation. Princeton, New Jersey, US: Princeton University Press.CrossRefGoogle Scholar
  99. Seymour, M., & Cumming, I. (1994). Maximum likelihood estimation for SAR interferometry. Institute of Electrical and Electronics Engineers, Piscataway, NJ (pp. 2272–2275).Google Scholar
  100. Sherrod, D. R., Scott, W. E., Stauffer, P. H. E. (2008). A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004–2006. U.S. Geological Survey Professional Paper (1750), 856 p.Google Scholar
  101. Simons, M., & Rosen, P. A. (2007). Interferometric synthetic aperture radar geodesy (vol. 3, pp. 391–446).Google Scholar
  102. Simpson, R. W., & Cox, A. (1977). Paleomagnetic evidence for tectonic rotation of the Oregon Coast Range. Geology, 5(10), 585–589.Google Scholar
  103. Sousa, J. J., Hooper, A. J., Hanssen, R. F., Bastos, L. C., & Ruiz, A. M. (2011). Persistent scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sensing of Environment, 115(10), 2652–2663.CrossRefGoogle Scholar
  104. Stoiber, R. E., & Carr, M. J. (1973). Quaternary volcanic and tectonic segmentation of Central America. Bulletin of Volcanology, 37(3), 304–325.CrossRefGoogle Scholar
  105. Vasco, D. W., Rucci, A., Ferretti, A., Novali, F., Bissell, R. C., & Ringrose, P. S., et al. (2010). Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophysical Research Letters, 37(3).Google Scholar
  106. Venezky, D. Y., & Rutherford, M. J. (1997). Preeruption conditions and timing of dacite-andesite magma mixing in the 2.2 ka eruption at mount rainier. Journal of Geophysical Research, 102(B9), 20069–20086.CrossRefGoogle Scholar
  107. Verplanck, E. P., & Duncan, R. A. (1987). Temporal variations in plate convergence and eruption rates in the Western Cascades Oregon. Tectonics, 6(2), 197–209.CrossRefGoogle Scholar
  108. Wadge, G., Zhu, M., Holley, R. J., James, I. N., Clark, P. A., Wang, C., et al. (2010). Correction of atmospheric delay effects in radar interferometry using a nested mesoscale atmospheric model. Journal of Applied Geophysics, 72(2), 141–149.CrossRefGoogle Scholar
  109. Wauthier, C., Cayol, V., Poland, M., Kervyn, F., dOreye, N., Hooper, A., Samsonov, S., Tiampo, K., & Smets, B. (2013). Nyamulagiras magma plumbing system inferred from 15 years of InSAR. Geological Society, London, Special Publications, 380(1), 39–65.Google Scholar
  110. Weaver, C. S., & Baker, G. E. (1988). Geometry of the Juan de Fuca plate beneath Washington and northern Oregon from seismicity. Bulletin of the Seismological Society of America, 78(1), 264–275.Google Scholar
  111. Wells, R. E., Weaver, C. S., & Blakely, R. J. (1998). Fore-arc migration in Cascadia and its neotectonic significance. Geology, 26(8), 759–762.CrossRefGoogle Scholar
  112. Werner, C., Wegmuller, U., Strozzi, T., & Weismann, A. (2000). Gamma SAR and interferometric processing software. In ERS—ENVISAT Symposium.Google Scholar
  113. Wesnousky, S. G. (2005). The San Andreas and Walker Lane fault systems, western North America: Transpression, transtension, cumulative slip and the structural evolution of a major transform plate boundary. Journal of Structural Geology, 27(8), 1505–1512.CrossRefGoogle Scholar
  114. Wicks, C. W., Dzurisin, D., Ingebritsen, S., Thatcher, W., Lu, Z., & Iverson, J. (2002). Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range. USA. Geophysical Research Letters, 29(7), 26–1.Google Scholar
  115. Wicks, C., de La Llera, J. C., Lara, L. E., & Lowenstern, J. (2011). The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano Chile. Nature, 478(7369), 374–377.CrossRefGoogle Scholar
  116. Wicks, C., Thatcher, W., & Dzurisin, D. (1998). Migration of fluids beneath Yellowstone caldera inferred from satellite radar interferometry. Science, 282(5388), 458–462.CrossRefGoogle Scholar
  117. Wilson, D. S. (1993). Confidence intervals for motion and deformation of the Juan de Fuca plate. Journal of Geophysical Research, 98(B9), 16053–16071.CrossRefGoogle Scholar
  118. Wright, T. J. (2002). Remote monitoring of the earthquake cycle using satellite radar interferometry. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 360(1801), 2873–2888.CrossRefGoogle Scholar
  119. Yamashita, K. M., & Doukas, M. P. (1987). Precise level lines at Crater Lake, Newberry Crater and South Sister. U.S. Geological Survey Open File Report (87-293), 32 pp.Google Scholar
  120. Ye, X., Kaufmann, H., & Guo, X. F. (2004). Landslide monitoring in the three gorges area using D-InSAR and corner reflectors. Photogrammetric Engineering and Remote Sensing, 70(10), 1167–1172.CrossRefGoogle Scholar
  121. Zebker, H., Rosen, P., & Goldstein, R. M. (1994). On the derivation of co-seismic displacement fields using differential radar interferometry: The landers earthquake. Journal of Geophysical Research, 99(B10), 19617–19634.CrossRefGoogle Scholar
  122. Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950–959.CrossRefGoogle Scholar
  123. Ziebart, M., Adhya, S., Sibthorpe, A., Edwards, S., & Cross, P. (2005). Combined radiation pressure and thermal modelling of complex satellites: Algorithms and on-orbit tests. Advances in Space Research, 36(3), 424–430.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin UniversityPerthAustralia

Personalised recommendations