Advertisement

Comparison of Isotropic Elasto-Plastic Models for the Plastic Metric Tensor \(C_p=F_p^T\, F_p\)

  • Patrizio Neff
  • Ionel-Dumitrel GhibaEmail author
Chapter
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 81)

Abstract

We discuss in detail existing isotropic elasto-plastic models based on 6-dimensional flow rules for the positive definite plastic metric tensor \(C_p=F_p^T\, F_p\) and highlight their properties and interconnections. We show that seemingly different models are equivalent in the isotropic case.

Notes

Acknowledgments

We would like to thank Prof. Stefanie Reese (RWTH Aachen), Prof. Jörn Ihlemann (TU Chemnitz), Dr. Alexey Shutov (TU Chemnitz) and Prof. Alexander Mielke (WIAS-Berlin) for in-depth discussion of flow rules in \(C_p\). I.D. Ghiba acknowledges support from the Romanian National Authority for Scientific Research (CNCS-UEFISCDI), Project No. PN-II-ID-PCE-2011-3-0521.

References

  1. 1.
    Brepols, T., Vladimirov, I., & Reese, S. (2014). Numerical comparison of isotropic hypo-and hyperelastic-based plasticity models with application to industrial forming processes. International Journal of Plasticity, 63, 18–48.CrossRefGoogle Scholar
  2. 2.
    Cleja-Ţigoiu, S. (2003). Consequences of the dissipative restrictions in finite anisotropic elasto-plasticity. International Journal of Plasticity, 19(11), 1917–1964.CrossRefzbMATHGoogle Scholar
  3. 3.
    Cleja-Ţigoiu, S., & Iancu, L. (2013). Orientational anisotropy and strength-differential effect in orthotropic elasto-plastic materials. International Journal of Plasticity, 47, 80–110.CrossRefGoogle Scholar
  4. 4.
    Cleja-Ţigoiu, S., & Maugin, G. A. (2000). Eshelby’s stress tensors in finite elastoplasticity. Acta Mechanica, 139(1–4), 231–249.CrossRefzbMATHGoogle Scholar
  5. 5.
    Cuitino, A., & Ortiz, M. (1992). A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Engineering Computations, 9(4), 437–451.CrossRefGoogle Scholar
  6. 6.
    Dettmer, W., & Reese, S. (2004). On the theoretical and numerical modelling of Armstrong-Frederick kinematic hardening in the finite strain regime. Computer Methods in Applied Mechanics and Engineering, 193(1), 87–116.CrossRefzbMATHGoogle Scholar
  7. 7.
    Frigeri, S., & Stefanelli, U. (2012). Existence and time-discretization for the finite-strain Souza-Auricchio constitutive model for shape-memory alloys. Continuum Mechanics and Thermodynamics, 24(1), 63–77.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ghiba, I. D., Neff, P., & Silhavy, M. (2015). The exponentiated Hencky-logarithmic strain energy. International Journal of Non-Linear Mechanics, 71, 48–51.CrossRefGoogle Scholar
  9. 9.
    Ghiba, I. D., Neff, P., & Martin, R. J. (2015). An ellipticity domain for the distortional Hencky-logarithmic strain energy. In Proceedings of the Royal Society of London A, 471(2184). doi: 10.1098/rspa.2015.0510.Google Scholar
  10. 10.
    Grandi, D., & Stefanelli, U. (2015). Finite plasticity in \(P^TP\). PreprintarXiv:1509.08681Google Scholar
  11. 11.
    Gupta, A., Steigmann, D. J., & Stölken, J. S. (2011). Aspects of the phenomenological theory of elastic-plastic deformation. Journal of Elasticity, 104(1–2), 249–266.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Helm, D. (2001). Formgedächtnislegierungen: experimentelle Untersuchung, phänomenologische Modellierung und numerische Simulation der thermomechanischen Materialeigenschaften. Ph.D-Thesis: Universität Kassel.Google Scholar
  13. 13.
    Kröner, E. (1955). Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktionen. Zeitschrift fur Angewandte Mathematik und Physik, 142(4), 463–475.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kröner, E. (1958). Kontinuumstheorie der Versetzungen und Eigenspannungen. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  15. 15.
    Kröner, E. (1959). Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Archive for Rational Mechanics and Analysis, 4(1), 273–334.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lee, E. H. (1969). Elastic-plastic deformation at finite strains. Journal of Applied Mechanics, 36(1), 1–6.CrossRefzbMATHGoogle Scholar
  17. 17.
    Lion, A. (1997). A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mechanica, 123(1–4), 1–25.CrossRefzbMATHGoogle Scholar
  18. 18.
    Mainik, A., & Mielke, A. (2005). Existence results for energetic models for rate-independent systems. Calculus of Variations and Partial Differential Equations, 22(1), 73–99.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mainik, A., & Mielke, A. (2009). Global existence for rate-independent gradient plasticity at finite strain. Journal of nonlinear science, 19(3), 221–248.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Maugin, G. (1994). Eshelby stress in elastoplasticity and ductile fracture. International Journal of Plasticity, 10(4), 393–408.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Miehe, C. (1992). Kanonische Modelle multiplikativer Elasto-Plastizität. Thermodynamische Formulierung und numerische Implementation. Habilitationsschrift: Universität Hannover, Germany.Google Scholar
  22. 22.
    Miehe, C. (1995). A theory of large-strain isotropic thermoplasticity based on metric transformation tensors. Archive of Applied Mechanics, 66, 45–64.zbMATHGoogle Scholar
  23. 23.
    Miehe, C. (1998). A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric. International Journal of Solids and Structures, 35(30), 3859–3897.CrossRefzbMATHGoogle Scholar
  24. 24.
    Mielke, A. (2003). Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Continuum Mechanics and Thermodynamics, 15(4), 351–382.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mielke, A. (2004). Existence of minimizers in incremental elasto-plasticity with finite strains. SIAM Journal on Mathematical Analysis, 36, 384–404.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mielke, A., & Müller, S. (2006). Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity. ZAMM - Journal of Applied Mathematics and Mechanics, 86, 233–250.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Montella, G., Govindjee, S., & Neff, P. (2015) The exponentiated Hencky strain energy in modelling tire derived material for moderately large deformations. To appear in Journal of Engineering Materials and Technology-Transactions of the ASME. Preprint arXiv:1509.06541.
  28. 28.
    Neff, P., Chełmiński, K., & Alber, H. D. (2009). Notes on strain gradient plasticity: finite strain covariant modelling and global existence in the infinitesimal rate-independent case. Mathematical Models and Methods in Applied Sciences, 19, 307–346.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Neff, P., & Ghiba, I. D. (2014). Loss of ellipticity for non-coaxial plastic deformations in additive logarithmic finite strain plasticity. International Journal of Non-Linear Mechanics, 81, 122–128. Preprint arXiv:1410.2819.
  30. 30.
    Neff, P., & Ghiba, I. D. (2015). The exponentiated Hencky-logarithmic strain energy. Part III: Coupling with idealized isotropic finite strain plasticity. Continuum Mechanics and Thermodynamics, 28, 477–487. doi: 10.1007/s00161-015-0449-y, the special issue in honour of D. J. Steigmann.Google Scholar
  31. 31.
    Neff, P., & Knees, D. (2008). Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM Journal on Mathematical Analysis, 40(1), 21–43.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Neff, P., Ghiba, I. D., & Lankeit, J. (2015). The exponentiated Hencky-logarithmic strain energy. Part I. Journal of Elasticity, 121, 143–234.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Neff, P., Ghiba, I. D., Lankeit, J., Martin, R., & Steigmann, D. J. (2015). The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers. Zeitschrift fur Angewandte Mathematik und Physik, 66, 1671–1693.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ortiz, M., & Simo, J. C. (1986). An analysis of a new class of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering, 23(3), 353–366.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Reese, S., & Christ, D. (2008). Finite deformation pseudo-elasticity of shape memory alloys-Constitutive modelling and finite element implementation. International Journal of Plasticity, 24(3), 455–482.CrossRefzbMATHGoogle Scholar
  36. 36.
    Reese, S., & Wriggers, P. (1997). A material model for rubber-like polymers exhibiting plastic deformation: computational aspects and a comparison with experimental results. Computer Methods in Applied Mechanics and Engineering, 148, 279–298.CrossRefzbMATHGoogle Scholar
  37. 37.
    Shutov, A.V. (2014). Personal comunication. 8/2014.Google Scholar
  38. 38.
    Shutov, A. V., & Ihlemann, J. (2014). Analysis of some basic approaches to finite strain elasto-plasticity in view of reference change. International Journal of Plasticity, 63, 183–197.CrossRefGoogle Scholar
  39. 39.
    Shutov, A. V., & Kreißig, R. (2008). Finite strain viscoplasticity with nonlinear kinematic hardening: Phenomenological modeling and time integration. Computer Methods in Applied Mechanics and Engineering, 197(21), 2015–2029.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Shutov, A. V., Landgraf, R., & Ihlemann, J. (2013). An explicit solution for implicit time stepping in multiplicative finite strain viscoelasticity. Computer Methods in Applied Mechanics and Engineering, 265, 213–225.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Simo, J.C. (1993). Recent developments in the numerical analysis of plasticity. In E. Stein (ed.), Progress in computational analysis of inelastic structures (pp. 115–173). Springer.Google Scholar
  42. 42.
    Simo, J.C., & Hughes, J.R. (1998). Computational Inelasticity., volume 7 of Interdisciplinary Applied Mathematics. Springer, Berlin.Google Scholar
  43. 43.
    Simo, J. C., & Ortiz, M. (1985). A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Computer Methods in Applied Mechanics and Engineering, 49, 221–245.CrossRefzbMATHGoogle Scholar
  44. 44.
    Steigmann, D. J., & Gupta, A. (2011). Mechanically equivalent elastic-plastic deformations and the problem of plastic spin. Theoretical and Applied Mechanics, 38(4), 397–417.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Vladimirov, I., Pietryga, M., & Reese, S. (2008). On the modelling of non-linear kinematic hardening at finite strains with application to springback-comparison of time integration algorithms. International Journal for Numerical Methods in Engineering, 75(1), 1–28.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für MathematikUniversität Duisburg-EssenEssenGermany
  2. 2.Department of MathematicsAlexandru Ioan Cuza University of IaşiIaşiRomania
  3. 3.Octav Mayer Institute of Mathematics of the Romanian AcademyIaşiRomania

Personalised recommendations