Advertisement

Folding Patterns in Partially Delaminated Thin Films

  • David Bourne
  • Sergio ContiEmail author
  • Stefan Müller
Chapter
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 81)

Abstract

Michael Ortiz and Gustavo Gioia showed in the 90s that the complex patterns arising in compressed elastic films can be analyzed within the context of the calculus of variations. Their initial work focused on films partially debonded from the substrate, subject to isotropic compression arising from the difference in thermal expansion coefficients between film and substrate. In the following two decades different geometries have been studied, as for example anisotropic compression. We review recent mathematical progress in this area, focusing on the rich phase diagram of partially debonded films with a lateral boundary condition.

Keywords

Bonding Energy Plate Theory Eikonal Equation Sacrificial Layer Tangential Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ortiz, M., & Gioia, G. (1994). Dynamically propagating shear bands in impact-loaded prenotched plates II. Numerical simulations. Journal of the Mechanics and Physics of Solids, 42, 531.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gioia, G., & Ortiz, M. (1997). Delamination of compressed thin films. Advances in Applied Mechanics, 33, 119.CrossRefzbMATHGoogle Scholar
  3. 3.
    Dacorogna, B. (1989). Direct methods in the calculus of variations. Applied Mathematical Sciences, 78. Springer.Google Scholar
  4. 4.
    Müller, S.: F. Bethuel et al. (Ed.) Calculus of variations and geometric evolution problems. Lecture Notes in Math (1713, pp. 85–210). Springer.Google Scholar
  5. 5.
    Mei, Y., Thurmer, D. J., Cavallo, F., Kiravittaya, S., & Schmidt, O. G. (2007). Semiconductor sub-micro-/nanochannel networks by deterministic layer wrinkling. Advanced Materials, 19, 2124.Google Scholar
  6. 6.
    Cendula, P., Kiravittaya, S., Mei, Y. F., Deneke, C., & Schmidt, O. G. (2009). Bending and wrinkling as competing relaxation pathways for strained free-hanging films. Physical Review B, 79, 085429.CrossRefGoogle Scholar
  7. 7.
    Aviles, P., & Giga, Y. (1987). A mathematical problem related to the physical theory of liquid crystal configurations. Proceedings of the Centre for Mathematical Analysis, Australian National University, 12, 1.MathSciNetGoogle Scholar
  8. 8.
    DeSimone, A., Kohn, R. V., Müller, S., & Otto, F. (2000). Magnetic microstructures : a paradigm of multiscale problems. In J.M. Ball (ed.) ICIAM 99: proceedings of the Fourth International Congress on Industrial and Applied Mathematics (pp. 175–190). Oxford: Oxford University Press.Google Scholar
  9. 9.
    Aviles, P., & Giga, Y. (1996). The distance function and energy. Proceedings of the Royal Society of Edinburgh Section A, 126, 923.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Aviles, P., & Giga, Y. (1999). On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proceedings of the Royal Society of Edinburgh Section A, 129, 1.Google Scholar
  11. 11.
    Ambrosio, L., De Lellis, C., & Mantegazza, C. (1999). Line energies for gradient vector fields in the plane. Calculus of Variations and Partial Differential Equations, 9, 327.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jin, W., Kohn, R.V. (2000). Singular perturbation and the energy of folds. Journal of Nonlinear Science, 10, 355.Google Scholar
  13. 13.
    DeSimone, A., Kohn, R. V., Müller, S., & Otto, F. (2001). A compactness result in the gradient theory of phase transitions. Proceedings of the Royal Society of Edinburgh Section A, 131, 833.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Poliakovsky, A. (2007). Upper bounds for singular perturbation problems involving gradient fields. Journal of the European Mathematical Society, 9(1), 1.Google Scholar
  15. 15.
    Conti, S., & De Lellis, C. (2007). Sharp upper bounds for a variational problem with singular perturbation. Mathematische Annalen, 338, 119.Google Scholar
  16. 16.
    Poliakovsky, A. (2005). A method for establishing upper bounds for singular perturbation problems. Comptes Rendus Mathematique Academy of Science Paris, 341, 97.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gioia, G., DeSimone, A., Ortiz, M., & Cuitino, A. M. (2002). Folding energetics in thin-film diaphragms. Proceedings of the Royal Society of London. Series A, 458, 1223.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Conti, S., DeSimone, A., & Müller, S. (2005). Self-similar folding patterns and energy scaling in compressed elastic sheets. Computer Methods in Applied Mechanics and Engineering, 194, 2534.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gioia, G., & Ortiz, M. (1998). Determination of thin-film debonding parameters from telephone-cord measurements. Acta Materialia, 46(1), 169.CrossRefGoogle Scholar
  20. 20.
    Audoly, B. (1999). Stability of straight delamination blisters. Physical Review Letters, 83, 4124.CrossRefGoogle Scholar
  21. 21.
    Audoly, B. (2000). Mode-dependent toughness and the delamination of compressed thin films. Journal of the Mechanics and Physics of Solids, 48, 2315.CrossRefzbMATHGoogle Scholar
  22. 22.
    Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S. (2000). Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates. Journal of Nonlinear Science, 10, 661.Google Scholar
  23. 23.
    Jin, W., & Sternberg, P. (2001). Energy estimates for the von Kármán model of thin-film blistering. Journal of Mathematical Physics, 42, 192.Google Scholar
  24. 24.
    Jin, W., & Sternberg, P. (2002). In-plane displacements in thin-film blistering. Proceedings of the Royal Society of Edinburgh Section A, 132, 911.Google Scholar
  25. 25.
    Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S. (2002). Energy scaling of compressed elastic films. Archive for Rational Mechanics and Analysis, 164, 1.Google Scholar
  26. 26.
    Friesecke, G., James, R. D., & Müller, S. (2002). A theorem on geometric rigidity and the derivation of nonlinear plate theory from 3d elasticity. Communications on Pure and Applied Mathematics, 55, 1461.Google Scholar
  27. 27.
    Friesecke, G., James, R. D., & Müller, S. (2006). A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Archive for Rational Mechanics and Analysis, 180, 183.Google Scholar
  28. 28.
    Kohn, R. V., & Müller, S. (1992). Branching of twins near an austenite-twinned-martensite interface. Philosophical Magazine A, 66, 697.Google Scholar
  29. 29.
    Kohn, R. V., & Müller, S. (1994). Surface energy and microstructure in coherent phase transitions. Communications on Pure and Applied Mathematics, 47, 405.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Conti, S. (2000). Branched microstructures: scaling and asymptotic self-similarity. Communications on Pure and Applied Mathematics, 53, 1448.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Conti, S. (2006). A lower bound for a variational model for pattern formation in shape-memory alloys. Continuum Mechanics and Thermodynamics, 17, 469.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zwicknagl, B. (2014). Microstructures in low-hysteresis shape memory alloys: scaling regimes and optimal needle shapes. Archive for Rational Mechanics and Analysis, 213, 355.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Diermeier, J. (2013). Master’s thesis, Universität Bonn.Google Scholar
  34. 34.
    Chan, A., & Conti, S. (2015). Energy scaling and branched microstructures in a model for shape-memory alloys with SO (2) invariance. Mathematical Models and Methods in Applied Sciences, 25, 1091.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Choksi, R., & Kohn, R. V. (1998). Bounds on the micromagnetic energy of a uniaxial ferromagnet. Communications on Pure and Applied Mathematics, 51, 259.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Choksi, R., Kohn, R. V., & Otto, F. (1999). Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Communications on Pure and Applied Mathematics, 201, 61.MathSciNetzbMATHGoogle Scholar
  37. 37.
    Viehmann, T. (2009). Uniaxial ferromagnets. Ph.D. thesis, Universität Bonn.Google Scholar
  38. 38.
    Choksi, R., Kohn, R. V., & Otto, F. (2004). Energy minimization and flux domain structure in the intermediate state of a type-I superconductor. Journal of Nonlinear Science, 14, 119.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Choksi, R., Conti, S., Kohn, R. V., & Otto, F. (2008). Ground state energy scaling laws during the onset and destruction of the intermediate state in a type-I superconductor. Communications on Pure and Applied Mathematics, 61, 595.Google Scholar
  40. 40.
    Conti, S., & Ortiz, M. (2005). Dislocation microstructures and the effective behavior of single crystals. Archive for Rational Mechanics and Analysis, 176, 103.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Conti, S., & Ortiz, M. (2008). Minimum principles for the trajectories of systems governed by rate problems. Journal of the Mechanics and Physics of Solids, 56, 1885.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Lobkovsky, A. E., Gentges, S., Li, H., Morse, D., & Witten, T. A. (1995). Boundary layer analysis of the ridge singularity in a thin plate. Science, 270, 1482.CrossRefGoogle Scholar
  43. 43.
    Witten, T. A. (2007). Stress focusing in elastic sheets. Reviews of Modern Physics, 79, 643.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Venkataramani, S. C. (2004). Lower bounds for the energy in a crumpled elastic sheet a minimal ridge. Nonlinearity, 17, 301.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Conti, S., & Maggi, F. (2008). Confining thin elastic sheets and folding paper. Archive for Rational Mechanics and Analysis, 187, 1.Google Scholar
  46. 46.
    Li, X., Cai, W., An, J., Kim, S. et al. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312.Google Scholar
  47. 47.
    Zang, J., Ryu, S., Pugno, N., Wang, Q., Tu, Q., Buehler, M. J., et al. (2013). Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nature Materials, 12, 321.Google Scholar
  48. 48.
    Zhang, K., & Arroyo, M. (2013). Adhesion and friction control localized folding in supported graphene. Journal of Applied Physics, 113, 193501.CrossRefGoogle Scholar
  49. 49.
    Zhang, K., & Arroyo, M. (2014). Understanding and strain-engineering wrinkle networks in supported graphene through simulations. Journal of Mechanics and Physics of Solids, 72, 61.Google Scholar
  50. 50.
    Arroyo, M., Zhang, K., & Rahimi, M. (2014). Mechanics of confined solid and fluid thin films: Graphene and lipid bilayers. IUTAM Symposium on innovative numerical approaches for materials and structures in multi-field and multi-scale problems.Google Scholar
  51. 51.
    Bourne, D., Conti, S., & Müller, S. (2015). Energy bounds for a compressed elastic film on a substrate. Preprint arXiv:1512.07416
  52. 52.
    Chambolle, A., Conti, S., & Francfort, G. (2014). Korn-Poincaré inequalities for functions with a small jump set. To appear in Indiana University Mathematics Journal. Preprint hal-01091710v1.Google Scholar
  53. 53.
    Antman, S. S. (1995). Applied Mathematical Sciences. In Nonlinear problems in elasticity, 107. Springer.Google Scholar
  54. 54.
    Ciarlet, P. G. (1997). Theory of plates, Mathematical elasticity, vol. II. Elsevier.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mathematical SciencesDurham UniversityDurhamUK
  2. 2.Institut Für Angewandte MathematikUniversität BonnBonnGermany

Personalised recommendations