Skip to main content

Automation of Primal Analysis

  • 1842 Accesses

Abstract

In order to formulate nonlinear finite elements symbolically in a general but simple way, a clear mathematical formulation is needed at the highest abstract level possible.

Keywords

  • Solution Vector
  • Gauss Point
  • Nonlinear Algebraic Equation
  • Load Deflection Curve
  • Tangent Operator

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-39005-5_3
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-39005-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 3.1

Notes

  1. 1.

    One possibility is to apply difference quotients which approximate the tangent matrix \(\mathbf K \), see e.g. Wriggers (2008).

References

  • Bazaraa, M.S., H.D. Sherali, and C.M. Shetty. 1993. Nonlinear programming, theory and algorithms, 2nd ed. Chichester: Wiley.

    MATH  Google Scholar 

  • Boersma, A., and P. Wriggers. 1997. An algebraic multigrid solver for finite element computations in solid mechanics. Engineering Computations 14: 202–215.

    CrossRef  MATH  Google Scholar 

  • Braess, D. 2007. Finite elements: theory, fast solvers, and applications in solid mechanics. Cambridge: Cambridge University Press.

    CrossRef  MATH  Google Scholar 

  • Brenner, S.C., and L.R. Scott. 2002. The mathematical theory of finite element methods. Berlin: Springer.

    CrossRef  MATH  Google Scholar 

  • Ciarlet, P.G. 1988. Mathematical elasticity I: three-dimensional elasticity. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Ciarlet, P.G. 1989. Introduction to numerical linear algebra and optimization, English Translation of 1982 Edition in Cambridge Texts in Applied Mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Crisfield, M.A. 1981. A fast incremental/iterative solution prodedure that handles snap through. Computers and Structures 13: 55–62.

    CrossRef  MATH  Google Scholar 

  • Crisfield, M.A. 1991. Non-linear finite element analysis of solids and structures, vol. 1. Chichester: Wiley.

    MATH  Google Scholar 

  • Crisfield, M.A., and J. Shi. 1991. A review of solution procedures and path-following techniques in relation to the non-linear finite element analysis of structures. In Computational Methods in Nonlinear Mechanics, ed. P. Wriggers, and W. Wagner. Berlin: Springer.

    Google Scholar 

  • Douglas, C., G. Haase, and U. Langer. 2003. A tutorial on elliptic PDE solvers and their parallelization. Philadelphia: SIAM.

    CrossRef  MATH  Google Scholar 

  • Duff, I.S. 2004. Ma57 - a new code for the solution of sparse symmetric definite and indefinite systems. ACM Transactions on Mathematical Software 30: 118–154.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Duff, I.S., A.M. Erisman, and J.K. Reid. 1989. Direct methods for sparse matrices. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Elman, H.C., D.J. Silvester, and A.J. Wathen. 2005. Finite elements and fast iterative solvers with applications in incompressible fluid dynamics. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Hackbusch, W. 1994. Iterative solution of large sparse systems. New York: Springer.

    CrossRef  MATH  Google Scholar 

  • Isaacson, E., and H.B. Keller. 1966. Analysis of numerical methods. London: Wiley.

    MATH  Google Scholar 

  • Johnson, C. 1987. Numerical solution of partial differential equations by the finite element method. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Jung, M., and U. Langer. 2001. Methode der finiten Elemente für Ingenieure. Teubner.

    Google Scholar 

  • Keller, H.B. 1977. Numerical solution of bifurcation and nonlinear eigenvalue problems. In Application of bifurcation theory, ed. P. Rabinowitz, 359–384. New York: Academic Press.

    Google Scholar 

  • Kickinger, F. 1996. Algebraic multigrid solver for discrete elliptic second order problems. Technical Report 96-5, Department of Mathematics, Johannes Kepler University, Linz.

    Google Scholar 

  • Korneev, V.G., U. Langer, and L. Xanthis. 2003. On fast domain decomposition solving procedures for hp-discretizations of 3d elliptic problems. Computational Methods in Applied Mathematics 3: 536–559.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Luenberger, D.G. 1984. Linear and nonlinear programming, 2nd ed. Reading: Addison-Wesley.

    MATH  Google Scholar 

  • Marsden, J.E., and T.J.R. Hughes. 1983. Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Meyer, A. 1990. A parallel preconditioned conjugate gradient method using domain decomposition and inexact solvers on each subdomain. Computing 45: 217–234.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Michaleris, P., D. Tortorelli, and C. Vidal. 1994. Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. International Journal for Numerical Methods in Engineering 37: 2471–2499.

    CrossRef  MATH  Google Scholar 

  • Ortega, J., and W. Rheinboldt. 1970. Iterative solution of nonlinear equations in several variables. New York: Academic Press.

    MATH  Google Scholar 

  • Ramm, E. 1981. Strategies for tracing the nonlinear response near limit points. In Nonlinear finite element analysis in structural mechanics, ed. W. Wunderlich, E. Stein, and K.J. Bathe. Berlin: Springer.

    Google Scholar 

  • Rheinboldt, W. 1984. Methods for solving systems of nonlinear equations. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Riks, E. 1972. The application of Newtons method to the problem of elastic stability. Journal of Applied Mechanics 39: 1060–1066.

    CrossRef  MATH  Google Scholar 

  • Riks, E. 1984. Some computational aspects of stability analysis of nonlinear structures. Computer Methods in Applied Mechanics and Engineering 47: 219–260.

    CrossRef  MATH  Google Scholar 

  • Saad, Y. 2003. Iterative methods for sparse linear systems. SIAM.

    Google Scholar 

  • Schenk, O., and K. Gärtner. 2004. Solving unsymmetric sparse systems of linear equations with pardiso. Journal of Future Generation Computer Systems 20: 475–487.

    CrossRef  MATH  Google Scholar 

  • Schwetlick, H., and H. Kretschmar. 1991. Numerische Verfahren für Naturwissenschaftler und Ingenieure. Leipzig: Fachbuchverlag.

    Google Scholar 

  • Schweizerhof, K., and P. Wriggers. 1986. Consistent linearization for path following methods in nonlinear fe-analysis. Computer Methods in Applied Mechanics and Engineering 59: 261–279.

    CrossRef  MATH  Google Scholar 

  • Taylor, R.L. 2000. A mixed-enhanced formulation for tetrahedral finite elements. International Journal for Numerical Methods in Engineering 47: 205–227.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Vainberg, M.M. 1964. Variational methods for the study of nonlinear operators. San Francisco: Holden Day.

    MATH  Google Scholar 

  • Wagner, W. 1991. Zur Behandlung von Stabilitätsproblemen mit der Methode der Finiten Elemente. Technical Report F91/1, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover.

    Google Scholar 

  • Wagner, W., and P. Wriggers. 1988. A simple method for the calculation of secondary branches. Engineering Computations 5: 103–109.

    CrossRef  Google Scholar 

  • Wriggers, P. 2008. Nonlinear finite elements. Berlin: Springer.

    MATH  Google Scholar 

  • Zienkiewicz, O.C., and R.L. Taylor. 2000a. The finite element method, vol. 2, 5th ed. Oxford: Butterworth-Heinemann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jože Korelc .

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Korelc, J., Wriggers, P. (2016). Automation of Primal Analysis. In: Automation of Finite Element Methods. Springer, Cham. https://doi.org/10.1007/978-3-319-39005-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39005-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39003-1

  • Online ISBN: 978-3-319-39005-5

  • eBook Packages: EngineeringEngineering (R0)