Bazaraa, M.S., H.D. Sherali, and C.M. Shetty. 1993. Nonlinear programming, theory and algorithms, 2nd ed. Chichester: Wiley.
MATH
Google Scholar
Boersma, A., and P. Wriggers. 1997. An algebraic multigrid solver for finite element computations in solid mechanics. Engineering Computations 14: 202–215.
CrossRef
MATH
Google Scholar
Braess, D. 2007. Finite elements: theory, fast solvers, and applications in solid mechanics. Cambridge: Cambridge University Press.
CrossRef
MATH
Google Scholar
Brenner, S.C., and L.R. Scott. 2002. The mathematical theory of finite element methods. Berlin: Springer.
CrossRef
MATH
Google Scholar
Ciarlet, P.G. 1988. Mathematical elasticity I: three-dimensional elasticity. Amsterdam: North-Holland.
MATH
Google Scholar
Ciarlet, P.G. 1989. Introduction to numerical linear algebra and optimization, English Translation of 1982 Edition in Cambridge Texts in Applied Mathematics. Cambridge: Cambridge University Press.
Google Scholar
Crisfield, M.A. 1981. A fast incremental/iterative solution prodedure that handles snap through. Computers and Structures 13: 55–62.
CrossRef
MATH
Google Scholar
Crisfield, M.A. 1991. Non-linear finite element analysis of solids and structures, vol. 1. Chichester: Wiley.
MATH
Google Scholar
Crisfield, M.A., and J. Shi. 1991. A review of solution procedures and path-following techniques in relation to the non-linear finite element analysis of structures. In Computational Methods in Nonlinear Mechanics, ed. P. Wriggers, and W. Wagner. Berlin: Springer.
Google Scholar
Douglas, C., G. Haase, and U. Langer. 2003. A tutorial on elliptic PDE solvers and their parallelization. Philadelphia: SIAM.
CrossRef
MATH
Google Scholar
Duff, I.S. 2004. Ma57 - a new code for the solution of sparse symmetric definite and indefinite systems. ACM Transactions on Mathematical Software 30: 118–154.
MathSciNet
CrossRef
MATH
Google Scholar
Duff, I.S., A.M. Erisman, and J.K. Reid. 1989. Direct methods for sparse matrices. Oxford: Clarendon Press.
MATH
Google Scholar
Elman, H.C., D.J. Silvester, and A.J. Wathen. 2005. Finite elements and fast iterative solvers with applications in incompressible fluid dynamics. Oxford: Oxford University Press.
MATH
Google Scholar
Hackbusch, W. 1994. Iterative solution of large sparse systems. New York: Springer.
CrossRef
MATH
Google Scholar
Isaacson, E., and H.B. Keller. 1966. Analysis of numerical methods. London: Wiley.
MATH
Google Scholar
Johnson, C. 1987. Numerical solution of partial differential equations by the finite element method. Cambridge: Cambridge University Press.
MATH
Google Scholar
Jung, M., and U. Langer. 2001. Methode der finiten Elemente für Ingenieure. Teubner.
Google Scholar
Keller, H.B. 1977. Numerical solution of bifurcation and nonlinear eigenvalue problems. In Application of bifurcation theory, ed. P. Rabinowitz, 359–384. New York: Academic Press.
Google Scholar
Kickinger, F. 1996. Algebraic multigrid solver for discrete elliptic second order problems. Technical Report 96-5, Department of Mathematics, Johannes Kepler University, Linz.
Google Scholar
Korneev, V.G., U. Langer, and L. Xanthis. 2003. On fast domain decomposition solving procedures for hp-discretizations of 3d elliptic problems. Computational Methods in Applied Mathematics 3: 536–559.
MathSciNet
CrossRef
MATH
Google Scholar
Luenberger, D.G. 1984. Linear and nonlinear programming, 2nd ed. Reading: Addison-Wesley.
MATH
Google Scholar
Marsden, J.E., and T.J.R. Hughes. 1983. Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall.
MATH
Google Scholar
Meyer, A. 1990. A parallel preconditioned conjugate gradient method using domain decomposition and inexact solvers on each subdomain. Computing 45: 217–234.
MathSciNet
CrossRef
MATH
Google Scholar
Michaleris, P., D. Tortorelli, and C. Vidal. 1994. Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. International Journal for Numerical Methods in Engineering 37: 2471–2499.
CrossRef
MATH
Google Scholar
Ortega, J., and W. Rheinboldt. 1970. Iterative solution of nonlinear equations in several variables. New York: Academic Press.
MATH
Google Scholar
Ramm, E. 1981. Strategies for tracing the nonlinear response near limit points. In Nonlinear finite element analysis in structural mechanics, ed. W. Wunderlich, E. Stein, and K.J. Bathe. Berlin: Springer.
Google Scholar
Rheinboldt, W. 1984. Methods for solving systems of nonlinear equations. Philadelphia: Society for Industrial and Applied Mathematics.
Google Scholar
Riks, E. 1972. The application of Newtons method to the problem of elastic stability. Journal of Applied Mechanics 39: 1060–1066.
CrossRef
MATH
Google Scholar
Riks, E. 1984. Some computational aspects of stability analysis of nonlinear structures. Computer Methods in Applied Mechanics and Engineering 47: 219–260.
CrossRef
MATH
Google Scholar
Saad, Y. 2003. Iterative methods for sparse linear systems. SIAM.
Google Scholar
Schenk, O., and K. Gärtner. 2004. Solving unsymmetric sparse systems of linear equations with pardiso. Journal of Future Generation Computer Systems 20: 475–487.
CrossRef
MATH
Google Scholar
Schwetlick, H., and H. Kretschmar. 1991. Numerische Verfahren für Naturwissenschaftler und Ingenieure. Leipzig: Fachbuchverlag.
Google Scholar
Schweizerhof, K., and P. Wriggers. 1986. Consistent linearization for path following methods in nonlinear fe-analysis. Computer Methods in Applied Mechanics and Engineering 59: 261–279.
CrossRef
MATH
Google Scholar
Taylor, R.L. 2000. A mixed-enhanced formulation for tetrahedral finite elements. International Journal for Numerical Methods in Engineering 47: 205–227.
MathSciNet
CrossRef
MATH
Google Scholar
Vainberg, M.M. 1964. Variational methods for the study of nonlinear operators. San Francisco: Holden Day.
MATH
Google Scholar
Wagner, W. 1991. Zur Behandlung von Stabilitätsproblemen mit der Methode der Finiten Elemente. Technical Report F91/1, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover.
Google Scholar
Wagner, W., and P. Wriggers. 1988. A simple method for the calculation of secondary branches. Engineering Computations 5: 103–109.
CrossRef
Google Scholar
Wriggers, P. 2008. Nonlinear finite elements. Berlin: Springer.
MATH
Google Scholar
Zienkiewicz, O.C., and R.L. Taylor. 2000a. The finite element method, vol. 2, 5th ed. Oxford: Butterworth-Heinemann.
Google Scholar