Skip to main content

Abstract

The devices which are dealing with the thermal radiation (such as emitters [1–4], receivers [5–8], filters [9–12], transformers [13–15], etc.) are mainly working in a finite range of frequencies. Such devices are frequently need to be optimized for getting the best possible value for the specific thermal radiative or thermodynamic characteristics that can be reached in the given spectral range. For example, the devices can be optimized for obtaining the maximal possible amount of the emitted (or received) total radiation energy, or, alternatively, the maximal number of the emitted (or received) number of photons. Potentially, the devices can be also optimized for some other thermal radiative or thermodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Matsumoto, T. Makoto, Opt. Express 18(102), A192 (2010)

    Article  Google Scholar 

  2. C.H. Chao, C.F. Lin, Enhance the blue-light emission of black-body radiation with metallic photonic boxes, in Proceedings of 5th IEEE Conference on Nanotechnology, Nagoya, Japan, July 2005, pp. 382–385

    Google Scholar 

  3. H. Sai, K. Yoshiaki, Y. Hiroo, Appl. Phys. Lett. 82, 1685 (2003)

    Article  Google Scholar 

  4. J.J. Greffet et al., Nature 416, 61 (2002)

    Article  Google Scholar 

  5. A. Rogalski, Infrared Detectors, 2nd edn. (CRC press, Hoboken, 2010), p. 898

    Google Scholar 

  6. E.L. Dereniak, G.D. Boreman, Infrared Detectors and Systems (Wiley, Hoboken, 1996), p. 592

    Google Scholar 

  7. S.R. Wenham, Applied Photovoltaics, 3rd edn. (Routledge, Abingdon, 2012), p. 304

    Google Scholar 

  8. M. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion, 2nd edn. (Springer, Berlin, 2005), p. 160

    Google Scholar 

  9. A.D. Brown et al., LPI Contributions 1683, 1107 (2012)

    Google Scholar 

  10. D.W. Porterfield et al., Appl. Opt. 33(25), 6046 (1994)

    Article  Google Scholar 

  11. T. Bauer, M. Lappschies, U. Schallenberg, S. Jakobs, Manufacturing and characterizing of all-dielectric band-pass filters for the short-wave infrared region, in SPIE Optical Systems Design (International Society for Optics and Photonics, 2011), p. 81680Z

    Google Scholar 

  12. T. Borne et al., Interference filters for thermo-photovoltaic applications (1999). [Study Group Report]. http://www.maths-in-industry.org/miis/view/year/1999.type.html

  13. I. Celanovic, B. Peter, S. Marin, Invitied Review Article in Oyo Buturi (Japan Society of Applied Physics) 80(8), 6 (2011)

    Google Scholar 

  14. Y.X. Yeng et al., Enabling high-temperature nanophotonics for energy applications. Proc. Natl. Acad. Sci. 109(7), 2280 (2012)

    Article  Google Scholar 

  15. R. St-Gelais et al., Demonstration of strong near-field radiative heat transfer between integrated nanostructures. Nano Lett. 14(12), 6971 (2014)

    Article  Google Scholar 

  16. S.M. Nikol’skii, Course of Mathematical Analysis (Central Books Ltd, London, 1978), p. 900

    Google Scholar 

  17. T.M. Apostol, Calculus Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra, 2nd edn. (Wiley, New York, 1991), p. 666

    Google Scholar 

  18. L.D. Landau, E.M. Lifshitz, Statistical Physics, Course of Theoretical Physics, vol. 5 (Pergamon Press, Oxford, New York, 1980), p. 484

    Google Scholar 

  19. W. Kaplan, Advanced Calculus, 5th edn. (Pearson, Boston, 2002), p. 736

    Google Scholar 

  20. H. Flanders, Differentiation under the integral sign. Am. Math. Mon. 80(6), 615 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Shichun, L. Fei, S. Xiu’e, Infrared Phys. 29(24), 205 (1989)

    Article  Google Scholar 

  22. L. Shichun, L. Fei, Infrared Phys. 32, 245 (1991)

    Article  Google Scholar 

  23. W. Zhigang, Infrared Phys. 33(4), 313 (1992)

    Article  Google Scholar 

  24. L. Shichun, L. Fei, Proc. SPIE 2245, 296 (1994)

    Article  Google Scholar 

  25. T. Fang, Int. Commun. Heat Mass Transfer 30(1), 47 (2003)

    Article  Google Scholar 

  26. S.M. Stewart, R.B. Johnson, Exact expressions for thermal contrast detected with thermal and quantum detectors, in SPIE Security + Defence (International Society for Optics and Photonics, 2014), pp. 92490D

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fisenko, A.I., Lemberg, V.F. (2016). Optimization Problems for the Devices Using the Black-Body Thermal Radiation. In: Black-body Radiative, Thermodynamic, and Chromatic Functions: Tables in Finite Spectral Ranges. Springer, Cham. https://doi.org/10.1007/978-3-319-38995-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38995-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38994-3

  • Online ISBN: 978-3-319-38995-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics