Advertisement

On Loopholes and Experiments

  • Marissa GiustinaEmail author
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

It is particularly striking that the concept of local realism would allow itself to be tested in an experiment.

Keywords

Hide Variable Bell Inequality Local Realism Entangle Photon Rotational Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Bell, On the Einstein Pedolsky Rosen paradox. Physics 1, 3 (1964)Google Scholar
  3. 3.
    J. Bell, Introduction to the hidden-variable question, in Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, 2004), pp. 29–39Google Scholar
  4. 4.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hiddenvariable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  5. 5.
    J.F. Clauser, M.A. Horne, Experimental consequences of objective local theories. Phys. Rev. D 10, 2 (1974)CrossRefGoogle Scholar
  6. 6.
    S.J. Freedman, J.F. Clauser, Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    T. Scheidl, R. Ursin, J. Kofler, S. Ramelow, X.-S. Ma, T. Herbst, L. Ratschbacher, A. Fedrizzi, N.K. Langford, T. Jennewein, A. Zeilinger, Violation of local realism with freedom of choice. Proc. Natl. Acad. Sci. USA 107, 19708–19713 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    F. Selleri, A. Zeilinger, Local deterministic description of Einstein-Podolsky-Rosen experiments. Found. Phys. 18, 1141–1158 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    N. Gisin, B. Gisin, A local hidden variable model of quantum correlation exploiting the detection loophole. Phys. Lett. A 260(5), 323–327 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    P. Pearle, Hidden-variable example based upon data rejection. Phys. Rev. D 2, 1418–1425 (1970)Google Scholar
  12. 12.
    P. Eberhard, Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, 2 (1993)CrossRefGoogle Scholar
  13. 13.
    J.-Å. Larsson, R.D. Gill, Bell’s inequality and the coincidence-time loophole. EPL (Europhys. Lett.) 67(5), 707 (2004)Google Scholar
  14. 14.
    J.-Å. Larsson, M. Giustina, J. Kofler, B. Wittmann, R. Ursin, S. Ramelow, Bell-inequality violation with entangled photons, free of the coincidence-time loophole. Phys. Rev. A 90, 032107 (2014)Google Scholar
  15. 15.
    D. Bohm, Quantum Theory (Prentice Hall, New York, 1951)Google Scholar
  16. 16.
    C.A. Kocher, E.D. Commins, Polarization correlation of photons emitted in an atomic cascade. Phys. Rev. Lett. 18, 575–577 (1967)ADSCrossRefGoogle Scholar
  17. 17.
    A. Aspect, J. Dalibard, G. Roger, Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Rowe, D. Kielpinski, V. Meyer, C. Sackett, W. Itano, C. Monroe, D.J. Wineland, Experimental violation of a Bell’s inequality with efficient detection. Lett. Nat. 409 (2001)Google Scholar
  19. 19.
    D. Matsukevich, P. Maunz, D. Moehring, S. Olmschenk, C. Monroe, Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100(15), 150404 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    M. Ansmann, H. Wang, R.C. Bialczak, M. Hofheinz, E. Lucero, M. Neeley, A.D. O’Connell, D. Sank, M. Weides, J. Wenner, A. Cleland, J.M. Martinis, Violation of Bell’s inequality in Josephson phase qubits. Lett. Nat. 461 (2009)Google Scholar
  21. 21.
    J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld, H. Weinfurter, Heralded entanglement between widely separated atoms. Science 337(6090), 72–75 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S.W. Nam, R. Ursin, A. Zeilinger, Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    B.G. Christensen, K.T. McCusker, J.B. Altepeter, B. Calkins, T. Gerrits, A.E. Lita, A. Miller, L.K. Shalm, Y. Zhang, S.W. Nam, N. Brunner, C.C.W. Lim, N. Gisin, P.G. Kwiat, Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 130406 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    A.E. Lita, A.J. Miller, S.W. Nam, Counting near-infrared single-photons with 95 % efficiency. Opt. Express 16, 5 (2008)CrossRefGoogle Scholar
  25. 25.
    A.J. Miller, S.W. Nam, J.M. Martinis, A.V. Sergienko, Demonstration of a low-noise nearinfrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83, 791–793 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    J. Kofler, S. Ramelow, M. Giustina, A. Zeilinger, On ‘Bell violation using entangled photons without the fair-sampling assumption’ (2013). arXiv:1307.6475v1 [quant-ph]
  27. 27.
    R.D. Gill, Time, finite statistics, and Bell’s fifth position, in Proceedings ofFoundations of Probability and Physics—2”. Series Mathematical Modelling in Physics and Engineering, Engineering, Economy and Cognitive Science, vol. 5 (Växjö Univ. Press, 2003), pp. 179–206Google Scholar
  28. 28.
    J. Kofler, M. Giustina, Requirements for a loophole-free Bell test using imperfect setting generators (2014). arXiv:1411.4787
  29. 29.
    J. Gallicchio, A.S. Friedman, D.I. Kaiser, Testing Bell’s inequality with cosmic photons: closing the setting-independence loophole. Phys. Rev. Lett. 112, 110405 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute for Quantum Optics and Quantum Information (IQOQI)Austrian Academy of SciencesViennaAustria
  2. 2.Vienna Center for Quantum Science and Technology (VCQ)ViennaAustria
  3. 3.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations