Skip to main content

Few-Body Entanglement Manipulation

  • Chapter
  • First Online:
Quantum [Un]Speakables II

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

In order to cope with the fact that there exists no single maximally entangled state (up to local unitaries) in the multipartite setting, we introduced in [1] the maximally entangled set of n-partite quantum states. This set consists of the states that are most useful under conversion of pure states via Local Operations assisted by Classical Communication (LOCC). We will review our results here on the maximally entangled set of three- and generic four-qubit states. Moreover, we will discuss the preparation of arbitrary (pure or mixed) states via deterministic LOCC transformations. In particular, we will consider the deterministic preparation of arbitrary three-qubit (four-qubit) states via LOCC using as a resource a six-qubit (23-qubit) state respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that this line of argumentation can be easily generalized to the n-qubit case. Thus, deterministic LOCC transformations among fully entangled n-qubit states are only possible between states in the same SLOCC class.

  2. 2.

    Note that \(MES_n\) is unique (up to LUs).

  3. 3.

    Note that for the non-generic cases similar results can be obtained [28].

  4. 4.

    Note that also any product or biseparable state can be written up to LUs in the decomposition given in Eq. (11).

References

  1. J.I. de Vicente, C. Spee, B. Kraus, Phys. Rev. Lett. 111, 110502 (2013)

    Article  Google Scholar 

  2. J.S. Bell, Physics 1, 195 (1964)

    Google Scholar 

  3. See e. g. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000)

    Google Scholar 

  4. R. Horodecki et al., Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Hillery, V. Buẑek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999). R. Cleve, D. Gottesman, H.-K. Lo, Phys. Rev. Lett. 83, 648 (1999)

    Google Scholar 

  8. R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  9. R.M. Gingrich, Phys. Rev. A 65, 052302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. H.-K. Lo, S. Popescu, Phys. Rev. A 63, 022301 (2001)

    Article  ADS  Google Scholar 

  11. M.A. Nielsen, Phys. Rev. Lett. 83, 436 (1999)

    Article  ADS  Google Scholar 

  12. E. Chitambar, Phys. Rev. Lett. 107, 190502 (2011)

    Article  ADS  Google Scholar 

  13. E. Chitambar, D. Leung, L. Mancinska, M. Ozols, A. Winter, Commun. Math. Phys. 328(1), 303–326 (2014). and references therein

    Google Scholar 

  14. S. Turgut, Y. Gül, N.K. Pak, Phys. Rev. A 81, 012317 (2010). S. Kintas, S. Turgut, J. Math. Phys. 51, 092202 (2010)

    Google Scholar 

  15. B. Kraus, Phys. Rev. Lett. 104, 020504 (2010). Phys. Rev. A 82, 032121 (2010)

    Google Scholar 

  16. W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Verstraete, J. Dehaene, B. De Moor, H. Verschelde, Phys. Rev. A 65, 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. D. M. Greenberger, M. Horne, A. Zeilinger, Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, ed. by M. Kafatos (Kluwer, Dordrecht, 1989), p.69

    Google Scholar 

  19. S. Ishizaka, M.B. Plenio, Phys. Rev. A 71, 052303 (2005)

    Article  ADS  Google Scholar 

  20. G. Gour, N.R. Wallach, New J. Phys. 13, 073013 (2011)

    Article  ADS  Google Scholar 

  21. C.H. Bennett, D.P. DiVincenzo, C.A. Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, W.K. Wootters, Phys. Rev. A 59, 1070 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. E. Chitambar, R. Duan, Phys. Rev. Lett. 103, 110502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. G. Gour, N.R. Wallach, J. Math. Phys. 51, 112201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. P. Facchi, G. Florio, G. Parisi, S. Pascazio, Phys. Rev. A 77, 060304(R) (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Acin, A. Andrianov, L. Costa, E. Jané, J.I. Latorre, R. Tarrach, Phys. Rev. Lett. 85, 1560 (2000)

    Article  ADS  Google Scholar 

  26. J.I. de Vicente, T. Carle, C. Streitberger, B. Kraus, Phys. Rev. Lett. 108, 060501 (2012)

    Article  Google Scholar 

  27. C. Spee, J.I. de Vicente, B. Kraus, Phys. Rev. A 88, 010305(R) (2013)

    Article  ADS  Google Scholar 

  28. C. Spee, J.I. de Vicente, B. Kraus, J. Math. Phys. 57, 052201 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kraus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spee, C., de Vicente, J.I., Kraus, B. (2017). Few-Body Entanglement Manipulation. In: Bertlmann, R., Zeilinger, A. (eds) Quantum [Un]Speakables II. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-38987-5_22

Download citation

Publish with us

Policies and ethics