Bell’s Theorem Tells Us Not What Quantum Mechanics Is, but What Quantum Mechanics Is Not

  • Marek Żukowski
Part of the The Frontiers Collection book series (FRONTCOLL)


Non-locality, or quantum-non-locality, are buzzwords in the community of quantum foundation and information scientists, which purportedly describe the implications of Bell’s theorem. When such phrases are treated seriously, that is it is claimed that Bell’s theorem reveals non-locality as an inherent trait of the quantum description of the micro-world, this leads to logical contradictions, which will be discussed here. In fact, Bell’s theorem, understood as violation of Bell inequalities by quantum predictions, is consistent with Bohr’s notion of complementarity. Thus, if it points to anything, then it is rather the significance of the principle of Bohr, but even this is not a clear implication. Non-locality is a necessary consequence of Bell’s theorem only if we reject complementarity by adopting some form of realism, be it additional hidden variables, additional hidden causes, etc., or counterfactual definiteness. The essay contains two largely independent parts. The first one is addressed to any reader interested in the topic. The second, discussing the notion of local causality, is addressed to people working in the field.

PACS numbers:

03.65.Ta 03.65.Ud 


  1. 1.
    D.M. Greenberger, M.A. Horne, A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, ed. by M. Kafatos (Kluwer Academic, Dordrecht, 1989); D.M. Greenberger, M.A. Horne, A. Shimony, A. Zeilinger, Am. J. Phys. 58, 1131 (1990)Google Scholar
  2. 2.
    N.D. Mermin, Phys. Today 43(6), 9 (1990)CrossRefGoogle Scholar
  3. 3.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)ADSCrossRefGoogle Scholar
  4. 4.
    J.S. Bell, Physics 1, 195 (1964)Google Scholar
  5. 5.
    See e.g., W.M. de Muynck, W. De Baere, Found. Phys. Lett., 3, 325 (1990), W.M. de Muynck, W. De Baere, H. Martens, Found. Phys. 24, 1589–1664 (1994), A. Stairs, unpublished,
  6. 6.
    See e.g., T. Norsen, Found. Phys. Lett. 19, 633 (2006), T. Norsen, Against Realism, Found. Phys. 37(3), 311–340 (2007), see also R. Tumulka, Found. Phys. 37, 186 (2007) for a similar approachGoogle Scholar
  7. 7.
    N. Bohr, in Essays 1958–1962 on Atomic Physics and Human Knowledge (Wiley, New York, 1963),
  8. 8.
    C.A. Fuchs, N.D. Mermin, R. Schack, Am. J. Phys. 82(8), 749 (2014)Google Scholar
  9. 9.
    N. Bohr, Phys. Rev. 48, 696 (1935)ADSCrossRefGoogle Scholar
  10. 10.
    J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Zukowski, Rev. Mod. Phys. 84, 777 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    J.S. Bell, La nouvelle cuisine, in Speakable and Unspeakable in Quantum Mechanics, 2nd ed. (Cambridge University Press, 2004)Google Scholar
  12. 12.
    N. Gisin, Found. Phys. 42, 80 (2012)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Clauser, M. Horne, Phys. Rev. D 10, 526 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    J.S. Bell, The theory of beables, TH-2053-CERN (1975)Google Scholar
  15. 15.
    M. Zukowski, Stud. Hist. Phil. Mod. Phys. 36B, 566–575 (2005)CrossRefGoogle Scholar
  16. 16.
    M. Zukowski, C. Brukner, J. Phys. A: Math. Theor. 47, 424009 (2014)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    K. Banaszek, K. Wodkiewicz, Phys. Rev. A 58, 4345 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    K. Rosolek, M. Stobinska, M. Wiesniak, M. Zukowski, Phys. Rev. Lett. 114, 100402 (2015)Google Scholar
  19. 19.
    A. Peres, Am. J. Phys. 46, 747 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and Astrophysics, University of GdánskGdánskPoland

Personalised recommendations