Skip to main content

How Many Samples?! Assessing the Mean of Parameters Important for Denitrification in High and Low Disturbance Headwater Wetlands of Central Pennsylvania

  • Chapter
  • First Online:
Natural and Constructed Wetlands

Abstract

Due to large time and monetary costs involved with sampling for denitrification and other biogeochemical processes, many studies are limited to only a few samples per site. However, denitrification is a highly spatially and temporally variable process due to high variability of the biogeochemical parameters underpinning denitrification such as nitrate (NO3 āˆ’), dissolved organic carbon (DOC), dissolved oxygen (DO), temperature, and pH. Accurately assessing wetlands for the means of parameters underpinning denitrification is vital, as inaccurate means can result in incorrect estimates of wetland-scale denitrification as well as inaccurate parameterization and validation of denitrification models. To examine adequate sample size for these parameters, shallow groundwater samples were collected from twenty wells each at two high disturbance (surrounded by agriculture) and two low disturbance (surrounded by forest) headwater riparian wetlands in central Pennsylvania on May 21st, 2013. A Monte Carlo analysis was used along with a cutoff of 10ā€‰% coefficient of variation to assess the appropriate number of samples required to accurately assess mean temperature, pH, DO, DOC, and NO3 āˆ’ within headwater wetlands. Temperature and pH required only one sample to accurately assess the site mean. DO required seven or more samples, while DOC and NO3 āˆ’ required ten or more samples to accurately assess the site mean. No differences were noted in required sample size between high and low disturbance sites. These results highlight the importance of taking numerous samples for wetland denitrification studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addy, K., Kellogg, D., Gold, A., Groffman, P., Ferendo, G., Sawyer, C. (2002). In situ push-pull method to determine ground water denitrification in riparian zones. Journal of Environmental Quality, 31, 1017ā€“1024.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Baker, M., & Vervier, P. (2004). Hydrological variability, organic matter supply and denitrification in the Garonne River ecosystem. Freshwater Biology, 49, 181ā€“190.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bernal, S., Sabater, F., Butturini, A., Nin, E., Sabater, S. (2007). Factors limiting denitrification in a Mediterranean riparian forest. Soil Biology and Biochemistry, 39, 2685ā€“2688.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bettez, N., & Groffman, P. (2012). Denitrification potential in stormwater control structures and natural riparian zones in an urban landscape. Environmental Science and Technology, 46, 10909ā€“10917.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Brooks, R., Brinson, M., Wardrop, D., Bishop, J. (2013) Hydrogeomorphic (HGM) classification, inventory, and reference wetlands. In R. Brooks, & D. Wardrop (Eds.), Mid-Atlantic freshwater wetlands: Advances in wetland science, management, policy, and practice (pp. 39ā€“60). New York: Springer.

    ChapterĀ  Google ScholarĀ 

  • Burgin, A., Groffman, P., Lewis, D. (2010). Factors regulating denitrification in a riparian wetland. Soil Science Society of America Journal, 74(5), 1826ā€“1833.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Casey, R., Taylor, M., Klaine, S. (2001). Mechanisms of nutrient attenuation in a subsurface flow riparian wetland. Journal of Environmental Quality, 30, 1732ā€“1737.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Casey, R., Taylor, M., Klaine, S. (2004). Localization of denitrification activity in macropores of a riparian wetland. Soil Biology and Biochemistry, 36, 563ā€“569.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • ClĆ©ment, J., Holmes, R., Peterson, B., Pinay, G. (2003). Isotopic investigation of denitrification in a riparian ecosystem in western France. Journal of Applied Ecology, 40, 1035ā€“1048.

    ArticleĀ  Google ScholarĀ 

  • Cohen, M., Dunne, E., Bruland G. (2008). Spatial variability of soil properties in cypress domes surrounded by different land uses. Wetlands, 28(2), 411ā€“422.

    ArticleĀ  Google ScholarĀ 

  • Cosandey, A., MaĆ®tre, V., Guenat, C. (2003). Temporal denitrification patterns in different horizons of two riparian soils. European Journal of Soil Science, 54, 25ā€“37.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Davis, J., Griffith, S., Horwath, W., Steiner, J., Myrold, D. (2008). Denitrification and nitrate consumption in an herbaceous riparian area and perennial ryegrass seed cropping system. Soil Science Society of America Journal, 72(5), 1299ā€“1310.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dhondt, K., Boeckx, P., Hofman, G., Van Cleemput, O. (2004). Temporal and spatial patterns of denitrification enzyme activity and nitrous oxide fluxes in three adjacent vegetated riparian buffer zones. Biology and Fertility of Soils, 40, 243ā€“251.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gift, D., Groffman, P., Kaushal, S., Mayer, P. (2010). Denitrification potential, root biomass, and organic matter in degraded and restored urban riparian zones. Restoration Ecology, 18, 113ā€“124.

    ArticleĀ  Google ScholarĀ 

  • Groffman, P. & Crawford, M. (2003). Denitrification potential in urban riparian zones. Journal of Environmental Quality, 32, 1144ā€“1149.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Groffman, P., Altabet, M., Bƶhlke, J., Butterbach-Bahl, K., David, M., Firestone, M., Giblin, A., Kana, T., Nielsen, L., Voytek, M. (2006). Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecological Applications, 16, 2091ā€“2122.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Hagedorn, F., Saurer, M., Blaser, P. (2004). A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils. European Journal of Soil Science, 55, 91ā€“100.

    ArticleĀ  Google ScholarĀ 

  • Hedin, L., Von Fischer, J., Ostrom, N., Kennedy, B., Brown, M., Robertson, G. (1998). Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology, 79, 684ā€“703.

    Google ScholarĀ 

  • Hefting, M., Bobbink, R., de Caluwe, H. (2003). Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. Journal of Environmental Quality, 32, 1194ā€“1203.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hefting, M., ClĆ©ment, J., Dowrick, D., Cosandey, A., Bernal, S., Cimpian, C., Tatur, A., Burt, T., Pinay, G. (2004). Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry, 67, 113ā€“134.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hill, A. & Cardaci, M. (2004). Denitrification and organic carbon availability in riparian wetland soils and subsurface sediments. Soil Science Society of America Journal, 68(1), 320ā€“325.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hill, A., Devito, K., Campagnolo, S., Sanmugadas, K. (2000). Subsurface denitrification in a forest riparianzone, interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry, 51, 193ā€“223.

    ArticleĀ  Google ScholarĀ 

  • Hochstein, L., Betlach, M., Kritikos, G. (1984). The effect of oxygen on denitrification during steady-state growht of Paracoccus halodenitrificans. Archives of Microbiology, 137, 74ā€“78.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hunter, R. & Faulkner, S. (2001). Denitrification potentials in restored and natural bottomland hardwood wetlands. Soil Science Society of America Journal, 65, 1865ā€“1872.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hychka, K., Brooks, R., Cole, A. (2013). Hydrology of Mid-Atlantic freshwater wetlands. In R. Brooks, & D. Wardrop (Eds.), Mid-Atlantic freshwater wetlands: Advances in wetland science, management, policy, and practice (pp. 109ā€“129). New York: Springer.

    ChapterĀ  Google ScholarĀ 

  • Istok, J., Humphrey, M., Schroth, M., Hyman, M., Oā€™Reilly, K. (1997). Single-well, ā€œPush-Pullā€ test for in situ determination of microbial activities. Ground Water, 35, 619ā€“631.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jones, R., & Hood, M. (1980). Effects of temperature, pH, salinity, and inorganic nitrogen on the rate of ammonium oxidation by nitrifiers isolated from wetland environments. Microbial Ecology, 6, 339ā€“347.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jordan, T., Andrews, M., Szuch, R., Whigham, D., Weller, D., Jacobs, A. (2007). Comparing functional assessments of wetlands to measurements of soil characteristics and nitrogen processing. Wetlands, 27, 479ā€“497.

    ArticleĀ  Google ScholarĀ 

  • Kellogg, D., Gold, A., Groffman, P., Addy, K., Stolt, M., Blazejewski, G. (2005). In situ ground water denitrification in stratified, permeable soils underlying riparian wetlands. Journal of Environmental Quality, 34, 524ā€“533.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Langergraber, G., Rousseau, D., GarcĆ­a, J., Mena, J. (2009). CWM1: A general model to describe biokinetic processes in subsurface flow constructed wetlands. Water Science and Technology, 59, 1687ā€“1697.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li, C., Frolking, S., Frolking, T. (1992). A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research, 97, 9759ā€“9776.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Maitre, V., Cosandey, A., Parriaux, A., Guenat, C. (2005). A methodology to estimate the denitrifying capacity of a riparian wetland. Journal of Environmental Quality, 34, 707ā€“716.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • McCarty, G., Mookherji, S., Angier, J. (2007). Characterization of denitrification activity in zones of groundwater exfiltration within a riparian wetland ecosystem. Biology and Fertility of Soils, 43, 691ā€“698.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • McClain, M., Boyer, E., Dent, C., Gergel, S., Grimm, N., Groffman, P., Hart, S., Harvey, J., Johnston, C., Mayorga, E., McDowell, W., Pinay, G. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6, 301ā€“312.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Moon, J. (2012). Linkages between wetland condition and microbial habitats, their heterogeneity, and associated microbial communities in the ridge and valley region of Pennsylvania. Dissertation, The Pennsylvania State University.

    Google ScholarĀ 

  • Moon, J., & Wardrop, D. (2013). Linking landscapes to wetland condition: A case study of eight headwater complexes in Pennsylvania. In R. Brooks, & D. Wardrop (Eds.), Mid-Atlantic freshwater wetlands: Advances in wetland science, management, policy, and practice (pp. 61ā€“108). New York: Springer.

    ChapterĀ  Google ScholarĀ 

  • Olde Venterink, H., Jan, E., Der Lee, V., Guda, E., Den Hoorn, V., Martin, W., Bert, L., Jos, T. (2006). Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Applied Vegetation Science, 9, 163ā€“174.

    ArticleĀ  Google ScholarĀ 

  • Orr, C., Stanley, E., Wilson, K., Finlay, J. (2007). Effects of restoration and reflooding on soil denitrification in a leveed midwestern floodplain. Ecological Applications, 17, 2365ā€“2376.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Parkin, T., & Tiedje, J. (1984). Application of a soil core method to investigate the effect of oxygen concentration on denitrification. Soil Biology and Biochemistry, 16, 331ā€“334.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Penn State Cooperative Wetlands Center. (2004). Monitoring and assessing Pennsylvania Wetlands. US, EPA. X-827157-01.

    Google ScholarĀ 

  • Pinay, G., Gumiero, B., Tabacchi, E., Gimenez, O., Tabacchi-Planty, A., Hefting, M., Burt, T., Black, V., Nilsson, C., Iordache, V., Bureau, F., Vought, L., Petts, G., DĆ©camps, H. (2007). Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshwater Biology, 52, 252ā€“266.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Racchetti, E., Bartoli, M., Soana, E., Longhi, D., Christian, R., Pinardi, M., Viaroli, P. (2011). Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification. Biogeochemistry, 103, 335ā€“354.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Roach, J., & Grimm, N. (2011). Denitrification mitigates n flux through the stream-floodplain complex of a desert city. Ecological Applications 21, 2618ā€“2636.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Rotkin-Ellman, M., Addy, K., Gold, A., Groffman, P. (2004). Tree species, root decomposition and subsurface denitrification potential in riparian wetlands. Plant and Soil, 263, 335ā€“344.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Seitzinger, S. (1994). Linkages between organic matter mineralization and denitrification in eight riparian wetlands. Biogeochemistry, 25, 19ā€“39.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sgouridis, F., Heppell, C., Wharton, G., Lansdown, K., Trimmer, M. (2011). Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in a temperate re-connected floodplain. Water Research, 45, 4909ā€“4922.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Simek, M., & Cooper, J. (2002). The influence of soil pH on denitrification: Progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science, 53, 345ā€“354.

    Google ScholarĀ 

  • Sirivedhin, T. & Gray, K. (2006). Factors affecting denitrification rates in experimental wetlands: Field and laboratory studies. Ecological Engineering, 26, 167ā€“181.

    ArticleĀ  Google ScholarĀ 

  • Stander, E. & Ehrenfeld, J. (2009). Rapid assessment of urban wetlands, do hydrogeomorphic classification and reference criteria work? Environmental Management, 43, 725ā€“42.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Sutton-Grier, A., Ho, M., Richardson, C. (2009). Organic amendments improve soil conditions and denitrification in a restored riparian wetland. Wetlands, 29, 343ā€“352.

    ArticleĀ  Google ScholarĀ 

  • Sutton-Grier, A., Kenney, M., Richardson, C. (2010). Examining the relationship between ecosystem structure and function using structural equation modelling, a case study examining denitrification potential in restored wetland soils. Ecological Modelling, 221, 761ā€“768.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ullah, S., Breitenbeck, G., Faulkner, S. (2005). Denitrification and N2O emission from forested and cultivated alluvial clay soil. Biogeochemistry, 73, 499ā€“513.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wardrop, D., Kentula, M., Jensen, S., Stevens, D., Hychka, K., Brooks, R. (2007a). Assessment of wetlands in the Upper Juniata watershed in Pennsylvania, USA using the hydrogeomorphic approach. Wetlands, 27, 432ā€“445.

    ArticleĀ  Google ScholarĀ 

  • Wardrop, D., Kentula, M., Stevens, D., Jensen, S., Brooks, R. (2007b). Assessment of wetland condition: An example from the Upper Juniata watershed in Pennsylvania, USA. Wetlands, 27, 416ā€“431.

    ArticleĀ  Google ScholarĀ 

  • Watson, T., Kellogg, D., Addy, K., Gold, A., Stolt, M., Donohue, S., Groffman, P. (2010). Groundwater denitrification capacity of riparian zones in suburban and agricultural watersheds. Journal of the American Water Resources Association, 46, 237ā€“245.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Woodward, K., Fellows, C., Conway, C., Hunter, H. (2009). Nitrate removal, denitrification and nitrous oxide production in the riparian zone of an ephemeral stream. Soil Biology and Biochemistry, 41, 671ā€“680.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

Funding for this work was provided by the United States Environmental Protection Agency (Grant #R834262), the National Aeronautics and Space Administration, and The Pennsylvania State University. We would like to thank the Pennsylvania Department of Conservation and Natural Resources, The Pennsylvania State Experimental Forest, and Larry Suwak for wetland access. We thank Karol Confer with and Michael Brown for assistance with water sample analysis. We wish to acknowledge Dr. Jessica Moon for assistance with the Monte Carlo simulation R code. Last but not least, we also appreciate field assistance from Bret Dietz, Marla Korpar, Kyle Martin, Danny Molinaro, and Jason Britson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliana Britson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Britson, A., Wardrop, D.H. (2016). How Many Samples?! Assessing the Mean of Parameters Important for Denitrification in High and Low Disturbance Headwater Wetlands of Central Pennsylvania. In: Vymazal, J. (eds) Natural and Constructed Wetlands. Springer, Cham. https://doi.org/10.1007/978-3-319-38927-1_6

Download citation

Publish with us

Policies and ethics