Global Warming: Confusion of Cause with Effect?

  • Marco SchmidtEmail author


The New Water Paradigm opens up an alternative approach to the climate debate. Rather than explain drought as a consequence of global warming by carbon emissions, this new approach addresses landscape dehydration as a key cause than rather key effect of global warming. The argument is based on the fact that solar energy is converted and a cooling occurs when water evaporates on Earth’s surface and water vapour condenses in the atmosphere as clouds.

However, modern urban expansion, global deforestation and desertification reduce evapotranspiration. In turn, reduced evaporation results in increasing short-wave solar radiation which is converted to long-wave thermal emissions and sensible heat. The result is that higher surface temperatures creating heat island effects over cities, contribute to local, regional and ultimately, global climate change challenges. Rainwater harvesting promises a major mitigation strategy against increased temperatures and drought. Urban water management can be enhanced by the ecological design of green roofs, evaporative facades, and ground permeable surfaces combined with vegetation. This paper demonstrates the application of these New Water Paradigm principles in Germany.


Evaporation Evapotranspiration Global warming Vegetation Urbanization Water cycle 



The analysis is part of the project KURAS on sustainable rainwater systems, mainly funded by the German Ministry of Education and Research (BMBF) in the framework of the FONA initiative (Research for Sustainable Development). The KURAS project tries to find new approaches on sustainable decentralizing rainwater management and wastewater systems ( The project involves 13 partners and is part of a call from German Federal Ministry of Education and Research on sustainable water infrastructure.


  1. GTZ. (2007). Reducing emissions from deforestation in developing countries. Deutsche Gesellschaft für Technologische Zusammenarbeit, Eschborn.Google Scholar
  2. Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A. Egorov, A., Chini, L., Justice, C.O., & Townshend, J.R.G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342, 850–853.CrossRefPubMedGoogle Scholar
  3. Keeling, C.D. (1960). The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12, 200–203. Scholar
  4. Kravčík, M., Pokorný, J., Kohutiar, J., Kováč, M., & Tóth, E. (2007). Water for the recovery of the climate – A new water paradigm.
  5. Milosovicova, J. (2010). Climate sensitive urban design: Responding to future heatwaves. Case study Berlin – Heidestrasse/ Europacity. Master Thesis, Germany, TU Berlin.
  6. Ripl, W., Pokorny, J., & Scheer, H. (2007). Memorandum on climate change: The necessary reforms of society to stabilize climate and solve energy issues.
  7. Salleh, A. (2010). A sociological reflection on the complexities of climate change research. International Journal of Water, 5(4), 285–297.CrossRefGoogle Scholar
  8. Salleh, A. (2016). Another climate strategy is possible. Globalization, 13(6).
  9. Schmidt, M. (2003). Energy saving strategies through the greening of buildings. In Proceedings of the Rio3, World energy and climate event. Rio de Janeiro, Brasil.
  10. Schmidt, M. (2005). The interaction between water and energy of greened roofs. In Proceedings world green roof congress. Basel, Switzerland.Google Scholar
  11. Schmidt, M. (2009). Rainwater harvesting for mitigating local and global warming. In Proceedings of the 5th urban research symposium, cities and climate change. Marseilles, France.Google Scholar
  12. Schmidt, M. (2010a). A new paradigm in sustainable land use. Topos, 70, 99–103.Google Scholar
  13. Schmidt, M. (2010b). Ecological design for climate mitigation in contemporary urban living. International Journal of Water, 5 (4), 337–352.Google Scholar
  14. Schmidt, M., & Teschner, K. (2000). Kombination von Regenwasserbewirtschaftungsmaßnahmen: Ergebnisse der Voruntersuchungen fuer das Projekt Potsdamer Platz- Teil 1: Stoffrueckhalt extensiever Dachbegruenung. gwf-Wasser/Abwasser, 141, 670–675.Google Scholar
  15. Schmidt, M., Diestel, H., Heinzmann, B., & Nobis-Wicherding, H. (2005). Surface runoff and groundwater recharge measured on semi-permeable surfaces. In Recharge systems for protecting and enhancing groundwater resources. In Proceedings of the 5th international symposium on management of aquifer recharge ISMAR5, Berlin, Germany.
  16. SenStadt. (2010). Rainwater management concepts: Greening buildings, cooling buildings. Planning, construction, operation and maintenance guidelines. Senatsverwaltung für Stadtentwicklung, Berlin, Germany.
  17. SenStadt. (2013) Environmental information systems, Berlin digital environmental Atlas, Map 02.13 Surface runoff, percolation, total runoff and evaporation from precipitation:
  18. Teschner, K. (2005). Constructed wetlands in innovative decentralised urban rainwater management. In Proceedings 5th international workshop on rainwater harvesting (p. 13). Seoul National University, Korea.Google Scholar
  19. Teschner, K., & Schmidt, M. (2000). Kombination von Regenwasserbewirtschaftungsmaßnahmen: Ergebnisse der Voruntersuchungen für das Projekt Potsdamer Platz – Teil 2: Regenwasserreinigung ueber ein Reinigungsbiotop. gwf-Wasser/Abwasser, 141(11), 773–779.Google Scholar
  20. Trenberth, K.E., Fasullo, J.T., & Kiehl, J. (2009). Earth’s global energy budget. Bulletin of the American Meteorological Society, 311–323.
  21. UBA. (2008) Environmental and spatial planning; Reduction of land use.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Technische Universität BerlinBerlinGermany

Personalised recommendations