Abstract
Polycomb bodies are concentrations of Polycomb Group proteins detectable in the nucleus at various intensities. The largest or most intense have been shown to contain genomic clusters of Polycomb Group targets such as the Hox gene clusters. Since, in general, the number of Polycomb bodies visible is an order of magnitude smaller than the known number of Polycomb target genes in the genome, they are often thought to involve the association of multiple genomic regions that are distant from one another in the genome. This chapter reviews the evidence for Polycomb bodies, their formation and their genomic content. While different lines of evidence indicate that genomically remote Polycomb target genes can associate, often enhancing the repressive effect, other evidence indicates that this is not usually a stable interaction, varies from one tissue to another, and is strongly dependent on the presence of insulator protein binding sites near Polycomb targets. The effects of transcriptional derepression and of post-transcriptional modifications of Polycomb proteins or of insulator proteins as factors modulating the association lf remote Polycomb target sites are also discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aoki T, Schweinsberg S, Manasson J, Schedl P (2008) A stage-specific factor confers Fab-7 boundary activity during early embryogenesis in Drosophila. Mol Cell Biol 28(3):1047–1060
Bantignies F, Grimaud C, Lavrov S, Gabut M, Cavalli G (2003) Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev 17:2406–2420
Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J, Tixier V, Mas A, Cavalli G (2011) Polycomb-dependent regulatory contacts between Distant Hox Loci in Drosophila. Cell 144(2):214–226
Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8(12):1006–1016
Bernstein E, Duncan EM, Masui O, Gil J, Heard E, Allis CD (2006) Mouse Polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 26(7):2560–2569
Buchenau P, Hodgson J, Strutt H, Arndt-Jovin DJ (1998) The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing. J Cell Biol 141:469–481
Chambeyron S, Da Silva NR, Lawson KA, Bickmore WA (2005) Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 132(9):2215–2223
Cheutin T, Cavalli G (2012) Progressive Polycomb assembly on H3K27me3 compartments generates Polycomb bodies with developmentally regulated motion. PLoS Genet 8(1), e1002465
Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311
Deniaud E, Bickmore WA (2009) Transcription and the nuclear periphery: edge of darkness? Curr Opin Genet Dev 19(2):187–191
Fedorova E, Sadoni N, Dahlsveen I, Koch J, Kremmer E, Eick D, Paro R, Zink D (2008) The nuclear organization of Polycomb/Trithorax group response elements in larval tissues of Drosophila melanogaster. Chromosome Res 16(4):649–673
Ficz G, Heintzmann R, Arndt-Jovin DJ (2005) Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132(17):3963–3976
Gambetta MC, Oktaba K, Muller J (2009) Essential role of the glycosyltransferase Sxc/Ogt in Polycomb repression. Science 325(5936):93–96
Gambetta MC, Müller J (2014) O-GlcNAcylation prevents aggregation of the Polycomb group repressor polyhomeotic. Dev Cell 31(5):629–639
Gil J, Bernard D, Martinez D, Beach D (2004) Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol 6:67–72
Gonzalez I, Mateos-Langerak J, Thomas A, Cheutin T, Cavalli G (2014) Identification of regulators of the three-dimensional Polycomb organization by a microscopy-based genome-wide RNAi screen. Mol Cell 54(3):485–499
Grimaud C, Bantignies F, Pal-Bhadra M, Ghana P, Bhadra U, Cavalli G (2006) RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124:957–971
Hernandez-Munoz I, Taghavi P, Kuijl C, Neefjes J, van Lohuizen M (2005) Association of BMI1 with Polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol Cell Biol 25(24):11047–11058
Isono K, Endo TA, Ku M, Yamada D, Suzuki R, Sharif J, Ishikura T, Toyoda T, Bernstein BE, Koseki H (2013) SAM Domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev Cell 26(6):565–577
Kagey MH, Melhuish TA, Wotton D (2003) The Polycomb protein Pc2 is a SUMO E3. Cell 113:127–137
Kim CA, Gingery M, Pilpa RM, Bowie JU (2002) The SAM domain of polyhomeotic forms a helical polymer. Nat Struct Biol 9:453–456
Klauke K, Radulovic V, Broekhuis M, Weersing E, Zwart E, Olthof S, Ritsema M, Bruggeman S, Wu X, Helin K, Bystrykh L, de Haan G (2013) Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol 15:353–362
Kung JT, Kesner B, An JY, Ahn JY, Cifuentes-Rojas C, Colognori D, Jeon Y, Szanto A, del Rosario BC, Pinter SF, Erwin JA, Lee JT (2015) Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Mol Cell 57(2):361–375
Lanzuolo C, Roure V, Dekker J, Bantignies F, Orlando V (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9(10):1167–1174
Lei EP, Corces VG (2006) RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet 38:936–941
Li H-B, Muller M, Bahechar IA, Kyrchanova O, Ohno K, Georgiev P, Pirrotta V (2011) Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster. Mol Cell Biol 31(4):616–625
Li H-B, Ohno K, Gui H, Pirrotta V (2013) Insulators target active genes to transcription factories and Polycomb-repressed genes to Polycomb bodies. PLoS Genet 9(4), e1003436
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293
MacPherson MJ, Beatty LG, Zhou W, Du M, Sadowski PD (2009) The CTCF insulator protein is posttranslationally modified by SUMO. Mol Cell Biol 29(3):714–725
Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27(8):295–306
Morey C, Da Silva NR, Perry P, Bickmore WA (2007) Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 134(5):909–919
Morey L et al (2012) Nonoverlapping functions of the Polycomb Group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10(1):47–62
Moshkovich N, Nisha P, Boyle PJ, Thompson BA, Dale RK, Lei EP (2011) RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes Dev 25(16):1686–1701
Muller M, Hagstrom K, Gyurkovics H, Pirrotta V, Schedl P (1999) The Mcp element from the Drosophila melanogaster bithorax complex mediates long-distance regulatory interactions. Genetics 153:1333–1356
Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D (2011) The dynamic architecture of Hox gene clusters. Science 334(6053):222–225
Noordermeer D, Leleu M, Schorderet P, Joye E, Chabaud F, Duboule D, Krumlauf R (2014) Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci. eLife 3, e02557
Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36:1065–1071
Pirrotta V, Li H-B (2012) A view of nuclear Polycomb bodies. Curr Opin Genet Dev 22(2):101–109
Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680
Ren X, Vincenz C, Kerppola TK (2008) Changes in the distributions and dynamics of Polycomb repressive complexes during embryonic stem cell differentiation. Mol Cell Biol 28(9):2884–2895
Robinson AK, Leal BZ, Chadwell LV, Wang R, Ilangovan U, Kaur Y, Junco SE, Schirf V, Osmulski PA, Gaczynska M, Hinck AP, Demeler B, McEwen DG, Kim CA (2012) The growth-suppressive function of the Polycomb group protein polyhomeotic is mediated by polymerization of its Sterile Alpha Motif (SAM) domain. J Biol Chem 287(12):8702–8713
Saurin AJ, Shiels C, Williamson J, Satijn DPE, Otte AP, Sheer D, Freemont PS (1998) The human Polycomb Group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J Cell Biol 142:887–898
Schwartz YB, Pirrotta V (2013) A new world of Polycombs: unexpected partnerships and emerging functions. Nat Rev Genet 14(12):853–864
Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3):458–472
Sigrist CJA, Pirrotta V (1997) Chromatin insulator elements block the silencing of a target gene by the Drosophila Polycomb Response Element (PRE) but allow trans interactions between PREs on different chromosomes. Genetics 147:209–221
Simon JA, Kingston RE (2013) Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49(5):808–824
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354
Sinclair DAR, Syrzycka M, Macauley MS, Rastgardani T, Komljenovic I, Vocadlo DJ, Brock HW, Honda BM (2009) Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc Natl Acad Sci U S A 106(32):13427–13432
Tolhuis B, Blom M, Kerkhoven RM, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B (2011) Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet 7(3), e1001343
Vatolina TY, Boldyreva LV, Demakova OV, Demakov SA, Kokoza EB, Semeshin VF, Babenko VN, Goncharov FP, Belyaeva ES, Zhimulev IF (2011) Identical functional organization of nonpolytene and polytene chromosomes in Drosophila melanogaster. PLoS One 6(10), e25960
Vazquez J, Müller M, Pirrotta V, Sedat JW (2006) The Mcp element mediates stable long-range chromosome-chromosome interactions in Drosophila. Mol Biol Cell 17:2158–2165
Voncken JW, Schweizer D, Aagaard L, Sattler L, Jantsch MF, van Lohuizen M (1999) Chromatin association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with it phosphorylation status. J Cell Sci 112:4627–4639
Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Pirrotta, V. (2016). Polycomb Bodies. In: Bazett-Jones, D., Dellaire, G. (eds) The Functional Nucleus. Springer, Cham. https://doi.org/10.1007/978-3-319-38882-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-38882-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-38880-9
Online ISBN: 978-3-319-38882-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)