Skip to main content

Nucleosome Dynamics Studied by Förster Resonance Energy Transfer

  • Chapter
  • First Online:
The Functional Nucleus

Abstract

Chromatin is a hierarchical structure that condenses the genetic material into a nucleus of less than 10 μm in diameter, while at the same time providing rapid on-demand access to specific DNA loci. This dual role requires a tightly regulated yet highly dynamic DNA packaging, with the nucleosome as the central repeating unit. The nucleosome is composed of multiple protein subunits with distinct dynamic properties and can undergo spontaneous conformational transitions.

Förster Resonance Energy Transfer (FRET) is a powerful method to analyze such conformational changes in nucleosomes. In this chapter we will review its concepts and describe different implementations of FRET, with a special emphasis on single molecule techniques. We will conclude with a brief overview of recent experiments, where FRET was successfully used to shed light on the dynamic properties of nucleosomes. These include the unwrapping dynamics in the entry/exit region, the pathway by which they disassemble and the role of posttranslational modifications on nucleosome architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews AJ, Luger K (2011) Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys 40:99–117

    Article  CAS  PubMed  Google Scholar 

  • Antonik M, Felekyan S, Gaiduk A, Seidel CA (2006) Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110(13):6970–6978

    CAS  PubMed  Google Scholar 

  • Arimura Y, Tachiwana H, Oda T, Sato M, Kurumizaka H (2012) Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome. Biochemistry 51(15):3302–3309

    Article  CAS  PubMed  Google Scholar 

  • Bednar J et al (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci U S A 95(24):14173–14178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas M, Voltz K, Smith JC, Langowski J (2011) Role of histone tails in structural stability of the nucleosome. PLoS Comput Biol 7(12), e1002279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas M, Langowski J, Bishop TC (2013) Atomistic simulations of nucleosomes. Wiley Interdiscip Rev Comput Mol Sci 3(4):378–392

    Article  CAS  Google Scholar 

  • Böhm V et al (2011) Nucleosome accessibility governed by the dimer/tetramer interface. Nucleic Acids Res 39(8):3093–3102

    Article  PubMed  Google Scholar 

  • Buning R, Kropff W, Martens K, & van Noort J (2015) spFRET reveals changes in nucleosome breathing by neighboring nucleosomes. J Phys Condens Matter Inst Phys J 27(6):064103.

    Google Scholar 

  • Bussiek M, Toth K, Schwarz N, Langowski J (2006) Trinucleosome compaction studied by fluorescence energy transfer and scanning force microscopy. Biochemistry 45(36):10838–10846

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2014) Revealing transient structures of nucleosomes as DNA unwinds. Nucleic Acids Res 42(13):8767–8776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choy JS et al (2010) DNA methylation increases nucleosome compaction and rigidity. J Am Chem Soc 132(6):1782–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cisse I, Okumus B, Joo C, Ha T (2007) Fueling protein DNA interactions inside porous nanocontainers. Proc Natl Acad Sci U S A 104(31):12646–12650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark DJ, Felsenfeld G (1992) A nucleosome core is transferred out of the path of a transcribing polymerase. Cell 71(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Clark DJ, Ghirlando R, Felsenfeld G, Eisenberg H (1993) Effect of positive supercoiling on DNA compaction by nucleosome cores. J Mol Biol 234(2):297–301

    Article  CAS  PubMed  Google Scholar 

  • Claudet C, Angelov D, Bouvet P, Dimitrov S, Bednar J (2005) Histone octamer instability under single molecule experiment conditions. J Biol Chem 280(20):19958–19965

    Article  CAS  PubMed  Google Scholar 

  • Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–388

    Article  CAS  PubMed  Google Scholar 

  • Clegg RM (1996) Fluorescence resonance energy transfer. In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, New York, pp 179–252

    Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol 319(5):1097–1113

    Article  CAS  PubMed  Google Scholar 

  • Di Cerbo V et al (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. eLife 3, e01632

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbel T, Langowski J (2015) The effect of DNA supercoiling on nucleosome structure and stability. J Phys Condens Matter Inst Phys J 27(6):064105

    Google Scholar 

  • Felekyan S, Kalinin S, Sanabria H, Valeri A, Seidel CA (2012) Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. Chemphyschem 13(4):1036–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira H, Somers J, Webster R, Flaus A, Owen-Hughes T (2007) Histone tails and the H3 alphaN helix regulate nucleosome mobility and stability. Mol Cell Biol 27(11):4037–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15(2):172–183

    Article  CAS  PubMed  Google Scholar 

  • Flaus A, Rencurel C, Ferreira H, Wiechens N, Owen-Hughes T (2004) Sin mutations alter inherent nucleosome mobility. EMBO J 23(2):343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Förster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 6:166–175

    Article  Google Scholar 

  • Fussner E, Ching RW, Bazett-Jones DP (2011) Living without 30 nm chromatin fibers. Trends Biochem Sci 36(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Gansen A, Hauger F, Toth K, Langowski J (2007) Single-pair fluorescence resonance energy transfer of nucleosomes in free diffusion: optimizing stability and resolution of subpopulations. Anal Biochem 368(2):193–204

    Article  CAS  PubMed  Google Scholar 

  • Gansen A, Toth K, Schwarz N, Langowski J (2009a) Structural variability of nucleosomes detected by single-pair forster resonance energy transfer: histone acetylation, sequence variation, and salt effects. J Phys Chem B 113(9):2604–2613

    Article  CAS  PubMed  Google Scholar 

  • Gansen A et al (2009b) Nucleosome disassembly intermediates characterized by single-molecule FRET. Proc Natl Acad Sci U S A 106(36):15308–15313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gansen A, Hieb AR, Bohm V, Toth K, Langowski J (2013) Closing the gap between single molecule and bulk FRET analysis of nucleosomes. PLoS One 8(4), e57018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gansen A, Toth K, Schwarz N, Langowski J (2015) Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure—a FRET study. Nucleic Acids Res 43(3):1433–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottesfeld JM, Luger K (2001) Energetics and affinity of the histone octamer for defined DNA sequences. Biochemistry 40(37):10927–10933

    Article  CAS  PubMed  Google Scholar 

  • Hall MA et al (2009) High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat Struct Mol Biol 16(2):124–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harp JM et al (1996) X-ray diffraction analysis of crystals containing twofold symmetric nucleosome core particles. Acta Crystallogr Sect D Biol Crystallogr 52(Part 2):283–288

    Google Scholar 

  • Hazan NP et al (2015) Nucleosome core particle disassembly and assembly kinetics studied using single-molecule fluorescence. Biophys J 109(8):1676–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges C, Bintu L, Lubkowska L, Kashlev M, Bustamante C (2009) Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 325(5940):626–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang WL, Deindl S, Harada BT, Zhuang X (2014) Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA. Nature 512(7513):213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov V, Li M, Mizuuchi K (2009) Impact of emission anisotropy on fluorescence spectroscopy and FRET distance measurements. Biophys J 97(3):922–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin F et al (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503(7475):290–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinin S, Valeri A, Antonik M, Felekyan S, Seidel CA (2010) Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J Phys Chem B 144:7983–7995

    Article  Google Scholar 

  • Kalinin S et al (2012) A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat Methods 9(12):1218–1225

    Article  CAS  PubMed  Google Scholar 

  • Kapanidis AN et al (2004) Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci U S A 101(24):8936–8941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelbauskas L et al (2008) Sequence-dependent variations associated with H2A/H2B depletion of nucleosomes. Biophys J 94(1):147–158

    Article  CAS  PubMed  Google Scholar 

  • Kireeva ML et al (2002) Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol Cell 9(3):541–552

    Article  CAS  PubMed  Google Scholar 

  • Koopmans WJ, Brehm A, Logie C, Schmidt T, van Noort J (2007) Single-pair FRET microscopy reveals mononucleosome dynamics. J Fluoresc 17(6):785–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koopmans WJ, Schmidt T, van Noort J (2008) Nucleosome immobilization strategies for single-pair FRET microscopy. Chemphyschem 9(14):2002–2009

    Article  CAS  PubMed  Google Scholar 

  • Koopmans WJ, Buning R, Schmidt T, van Noort J (2009) spFRET using alternating excitation and FCS reveals progressive DNA unwrapping in nucleosomes. Biophys J 97(1):195–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudryavtsev V et al (2012) Combining MFD and PIE for accurate single-pair Forster resonance energy transfer measurements. Chemphyschem 13(4):1060–1078

    Article  CAS  PubMed  Google Scholar 

  • Lawrence M, Daujat S, Schneider R (2016) Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32(1):42–56

    Google Scholar 

  • Lee JY, Lee TH (2012) Effects of DNA methylation on the structure of nucleosomes. J Am Chem Soc 134(1):173–175

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Wei S, Lee TH (2011) Effects of histone acetylation by Piccolo NuA4 on the structure of a nucleosome and the interactions between two nucleosomes. J Biol Chem 286(13):11099–11109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Levitus M, Bustamante C, Widom J (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84:7024–7027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276(1):19–42

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13(7):436–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, North JA, Poirier MG (2014) Single molecule fluorescence methodologies for investigating transcription factor binding kinetics to nucleosomes and DNA. Methods 70(2–3):108–118

    Article  CAS  PubMed  Google Scholar 

  • McDowall AW, Smith JM, Dubochet J (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J 5(6):1395–1402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menshikova I, Menshikov E, Filenko N, Lyubchenko YL (2011) Nucleosomes structure and dynamics: effect of CHAPS. Int J Biochem Mol Biol 2(2):129–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74(8):3597–3619

    Article  CAS  Google Scholar 

  • Mozziconacci J, Victor J-M (2003) Nucleosome gaping supports a functional structure for the 30 nm chromatin fiber. J Struct Biol 143(1):72–76

    Article  CAS  PubMed  Google Scholar 

  • Müller BK, Zaychikov E, Brauchle C, Lamb DC (2005) Pulsed interleaved excitation. Biophys J 89(5):3508–3522

    Article  PubMed  PubMed Central  Google Scholar 

  • Musselman CA et al (2013) Binding of PHF1 Tudor to H3K36me3 enhances nucleosome accessibility. Nat Commun 4:2969

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann H et al (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36(1):153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo TT, Ha T (2015) Nucleosomes undergo slow spontaneous gaping. Nucleic Acids Res 43(8):3964–3971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nir E et al (2006) Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J Phys Chem B 110(44):22103–22124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North JA et al (2012) Regulation of the nucleosome unwrapping rate controls DNA accessibility. Nucleic Acids Res 40(20):10215–10227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurse NP, Jimenez-Useche I, Smith IT, Yuan C (2013) Clipping of flexible tails of histones H3 and H4 affects the structure and dynamics of the nucleosome. Biophys J 104(5):1081–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183(122):330–332

    Article  CAS  PubMed  Google Scholar 

  • Perrin J (1927) Fluorescence et induction moleculaire par resonance. C R Hebd Seances Acad Sci 184:1097–1100

    CAS  Google Scholar 

  • Poirier MG, Oh E, Tims HS, Widom J (2009) Dynamics and function of compact nucleosome arrays. Nat Struct Mol Biol 16(9):938–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polach KJ, Widom J (1995) Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254(2):130–149

    Article  CAS  PubMed  Google Scholar 

  • Polach KJ, Lowary PT, Widom J (2000) Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes. J Mol Biol 298(2):211–223

    Article  CAS  PubMed  Google Scholar 

  • Prinsen P, Schiessel H (2010) Nucleosome stability and accessibility of its DNA to proteins. Biochimie 92(12):1722–1728

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal E et al (2006) A genomic code for nucleosome positioning. Nature 442(7104):772–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheinin MY, Li M, Soltani M, Luger K, Wang MD (2013) Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss. Nat Commun 4:2579

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon M et al (2011) Histone fold modifications control nucleosome unwrapping and disassembly. Proc Natl Acad Sci U S A 108(31):12711–12716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Google Scholar 

  • Thastrom A et al (1999) Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J Mol Biol 288(2):213–229

    Article  CAS  PubMed  Google Scholar 

  • Thastrom A, Gottesfeld JM, Luger K, Widom J (2004) Histone-DNA binding free energy cannot be measured in dilution-driven dissociation experiments. Biochemistry 43(3):736–741

    Article  CAS  PubMed  Google Scholar 

  • Tims HS, Gurunathan K, Levitus M, Widom J (2011) Dynamics of nucleosome invasion by DNA binding proteins. J Mol Biol 411(2):430–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomschik M, Zheng H, van Holde K, Zlatanova J, Leuba SH (2005) Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 102(9):3278–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomschik M, van Holde K, Zlatanova J (2009) Nucleosome dynamics as studied by single-pair fluorescence resonance energy transfer: a reevaluation. J Fluoresc 19(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Torres T, Levitus M (2007) Measuring conformational dynamics: a new FCS-FRET approach. J Phys Chem B 111(25):7392–7400

    Article  CAS  PubMed  Google Scholar 

  • Toth K, Brun N, Langowski J (2001) Trajectory of nucleosomal linker DNA studied by fluorescence resonance energy transfer. Biochemistry 40(23):6921–6928

    Article  CAS  PubMed  Google Scholar 

  • Toth K, Brun N, Langowski J (2006) Chromatin compaction at the mononucleosome level. Biochemistry 45(6):1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Tóth K et al (2013) Histone- and DNA sequence-dependent stability of nucleosomes studied by single-pair FRET. Cytometry A 83(9):839–846

    Article  PubMed  Google Scholar 

  • Vence T (2015) Crystal Unclear. The Scientist (Oct 15). http://www.the-scientist.com/?articles.view/articleNo/44196/title/Crystal-Unclear/

  • Voltz K, Trylska J, Calimet N, Smith JC, Langowski J (2012) Unwrapping of nucleosomal DNA ends: a multiscale molecular dynamics study. Biophys J 102(4):849–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widengren J et al (2006) Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. Anal Chem 78(6):2039–2050

    Article  CAS  PubMed  Google Scholar 

  • Widom J, Klug A (1985) Structure of the 300A chromatin filament: X-ray diffraction from oriented samples. Cell 43(1):207–213

    Article  CAS  PubMed  Google Scholar 

  • Yager TD, McMurray CT, van Holde KE (1989) Salt-induced release of DNA from nucleosome core particles. Biochemistry 28(5):2271–2281

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gansen, A., Langowski, J. (2016). Nucleosome Dynamics Studied by Förster Resonance Energy Transfer. In: Bazett-Jones, D., Dellaire, G. (eds) The Functional Nucleus. Springer, Cham. https://doi.org/10.1007/978-3-319-38882-3_15

Download citation

Publish with us

Policies and ethics