Dynamic Time-Dependent Route Planning in Road Networks with User Preferences

  • Moritz Baum
  • Julian Dibbelt
  • Thomas Pajor
  • Dorothea Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9685)

Abstract

Algorithms for computing driving directions on road networks often presume constant costs on each arc. In practice, the current traffic situation significantly influences the travel time. One can distinguish traffic congestion that can be predicted using historical traffic data, and congestion due to unpredictable events, e. g., accidents. We study the dynamic and time-dependent route planning problem, which takes both live traffic and long-term prediction into account. We propose a practical algorithm that, while robust to user preferences, is able to integrate global changes of the time-dependent metric faster than previous approaches and allows queries in the order of milliseconds.

References

  1. 1.
    Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. CoRR abs/1504.05140 (2015)Google Scholar
  2. 2.
    Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent travel times with contraction hierarchies. ACM J. Exp. Algorithmics 18(1.4), 1–43 (2013)MathSciNetMATHGoogle Scholar
  3. 3.
    Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective functions. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 169–180. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contraction hierarchies. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 93–104. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In: SIGSPATIAL 2013, pp. 54–63. ACM Press (2013)Google Scholar
  6. 6.
    Cooke, K., Halsey, E.: The shortest route through a network with time-dependent internodal transit times. J. Math. Anal. Appl. 14(3), 493–498 (1966)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks with waiting policies. Networks 44(1), 41–46 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60–94 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning in road networks. Transport. Sci. (2015)Google Scholar
  10. 10.
    Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts. In: IPDPS 2011, pp. 1135–1146. IEEE Computer Society (2011)Google Scholar
  11. 11.
    Delling, D., Nannicini, G.: Core routing on dynamic time-dependent road networks. Informs J. Comput. 24(2), 187–201 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Delling, D., Wagner, D.: Time-dependent route planning. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: A case for time-dependent shortest path computation in spatial networks. In: SIGSPATIAL 2010, pp. 474–477. ACM Press (2010)Google Scholar
  15. 15.
    Diamantopoulos, T., Kehagias, D., König, F., Tzovaras, D.: Investigating the effect of global metrics in travel time forecasting. In: ITSC 2013, pp. 412–417. IEEE (2013)Google Scholar
  16. 16.
    Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. J. Exp. Algorithmics. 21(1), 1.5:1–1.5:49 (2016). doi:10.1145/2886843 CrossRefGoogle Scholar
  18. 18.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3), 395–412 (1969)CrossRefMATHGoogle Scholar
  20. 20.
    Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: IWCTS 2013, pp. 25:25–25:30. ACM Press (2013)Google Scholar
  21. 21.
    Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. a unified framework for all shortest-path query variants on road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 298–311. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  22. 22.
    Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an algorithmic lens. In: SIGSPATIAL 2008, pp. 16:1–16:10. ACM Press (2008)Google Scholar
  23. 23.
    Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent shortest paths. Algorithmica 68(4), 1075–1097 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Geisberger, R., Sanders, P.: Engineering time-dependent many-to-many shortest paths computation. In: ATMOS 2010, pp. 74–87. OASIcs (2010)Google Scholar
  25. 25.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)CrossRefGoogle Scholar
  26. 26.
    Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms optimized for road networks. In: ALENEX 2004, pp. 100–111. SIAM (2004)Google Scholar
  27. 27.
    Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: ALENEX 2016, pp. 90–102. SIAM (2016)Google Scholar
  28. 28.
    Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for shortest-path queries. ACM J. Exp. Algorithmics 13(2.5), 1–26 (2008)MathSciNetMATHGoogle Scholar
  29. 29.
    Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear function. J. Inf. Process. 9(3), 159–162 (1986)MathSciNetMATHGoogle Scholar
  30. 30.
    Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)CrossRefGoogle Scholar
  31. 31.
    Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wagner, D., Zaroliagis, C.: Analysis and experimental evaluation of time-dependent distance oracles. In: ALENEX 2015, pp. 147–158. SIAM (2015)Google Scholar
  32. 32.
    Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wagner, D., Zaroliagis, C.: Engineering oracles for time-dependent road networks. In: ALENEX 2016, pp. 1–14. SIAM (2016)Google Scholar
  33. 33.
    Kontogiannis, S., Wagner, D., Zaroliagis, C.: Hierarchical Oracles for Time-Dependent Networks. CoRR abs/1502.05222 (2015)Google Scholar
  34. 34.
    Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 713–725. Springer, Heidelberg (2014)Google Scholar
  35. 35.
    Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks. Algorithmica 74(4), 1404–1434 (2015)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Maervoet, J., Causmaecker, P.D., Berghe, G.V.: Fast approximation of reach hierarchies in networks. In: SIGSPATIAL 2014, pp. 441–444. ACM Press (2014)Google Scholar
  37. 37.
    Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* search on time-dependent road networks. Networks 59, 240–251 (2012)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Orda, A., Rom, R.: Shortest-path and minimum delay algorithms in networks with time-dependent edge-length. J. ACM 37(3), 607–625 (1990)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Pfoser, D., Brakatsoulas, S., Brosch, P., Umlauft, M., Tryfona, N., Tsironis, G.: Dynamic travel time provision for road networks. In: SIGSPATIAL 2008, pp. 68:1–68:4. ACM Press (2008)Google Scholar
  40. 40.
    Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: ALENEX 2012, pp. 16–29. SIAM (2012)Google Scholar
  41. 41.
    Schild, A., Sommer, C.: On balanced separators in road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 286–297. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  42. 42.
    Sherali, H.D., Ozbay, K., Subramanian, S.: The time-dependent shortest pair of disjoint paths problem: complexity, models, and algorithms. Networks 31(4), 259–272 (1998)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Moritz Baum
    • 1
  • Julian Dibbelt
    • 1
  • Thomas Pajor
    • 2
  • Dorothea Wagner
    • 1
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.CupertinoUSA

Personalised recommendations