Computing Nonsimple Polygons of Minimum Perimeter

  • Sándor P. Fekete
  • Andreas Haas
  • Michael Hemmer
  • Michael Hoffmann
  • Irina Kostitsyna
  • Dominik Krupke
  • Florian Maurer
  • Joseph S. B. Mitchell
  • Arne Schmidt
  • Christiane Schmidt
  • Julian Troegel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9685)

Abstract

We provide exact and approximation methods for solving a geometric relaxation of the Traveling Salesman Problem (TSP) that occurs in curve reconstruction: for a given set of vertices in the plane, the problem Minimum Perimeter Polygon (MPP) asks for a (not necessarily simply connected) polygon with shortest possible boundary length. Even though the closely related problem of finding a minimum cycle cover is polynomially solvable by matching techniques, we prove how the topological structure of a polygon leads to NP-hardness of the MPP. On the positive side, we show how to achieve a constant-factor approximation.

When trying to solve MPP instances to provable optimality by means of integer programming, an additional difficulty compared to the TSP is the fact that only a subset of subtour constraints is valid, depending not on combinatorics, but on geometry. We overcome this difficulty by establishing and exploiting additional geometric properties. This allows us to reliably solve a wide range of benchmark instances with up to 600 vertices within reasonable time on a standard machine. We also show that using a natural geometry-based sparsification yields results that are on average within 0.5 % of the optimum.

Keywords

Traveling Salesman Problem (TSP) Minimum Perimeter Polygon (MPP) Curve reconstruction NP-hardness Exact optimization Integer programming Computational geometry meets combinatorial optimization 

Notes

Acknowledgements

We thank Stephan Friedrichs and Melanie Papenberg for helpful conversations. Parts of this work were carried out at the 30th Bellairs Winter Workshop on Computational Geometry (Barbados) in 2015. We thank the workshop participants and organizers, particularly Erik Demaine. Joseph Mitchell is partially supported by NSF (CCF-1526406). Irina Kostitsyna is supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 639.023.208.

References

  1. 1.
    Althaus, E., Mehlhorn, K.: Traveling salesman-based curve reconstruction in polynomial time. SIAM J. Comput. 31(1), 27–66 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: On the solution of traveling salesman problems. Documenta Mathematica – Journal der DeutschenMathematiker-Vereinigung, ICM, pp. 645–656 (1998)Google Scholar
  3. 3.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)MATHGoogle Scholar
  4. 4.
    Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1–4), 97–108 (1989)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Christofides, N.: Worst-case analysis of a new heuristic for the Travelling Salesman Problem, Technical report 388, Graduate School of Industrial Administration, CMU (1976)Google Scholar
  7. 7.
    Cook, W.J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2012)MATHGoogle Scholar
  8. 8.
    Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley, New York (1998)MATHGoogle Scholar
  9. 9.
    Dey, T.K., Mehlhorn, K., Ramos, E.A.: Curve reconstruction: connecting dots with good reason. Comput. Geom. 15(4), 229–244 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dillencourt, M.B.: A non-Hamiltonian, nondegenerate Delaunay triangulation. Inf. Process. Lett. 25(3), 149–151 (1987)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fekete, S.P., Friedrichs, S., Hemmer, M., Papenberg, M., Schmidt, A., Troegel, J.: Area- and boundary-optimal polygonalization of planar point sets. In: EuroCG 2015, pp. 133–136 (2015)Google Scholar
  12. 12.
    Fekete, S.P., Haas, A., Hemmer, M., Hoffmann, M., Kostitsyna, I., Krupke, D., Maurer, F., Mitchell, J.S.B., Schmidt, A., Schmidt, C., Troegel, J.: Computing nonsimple polygons of minimum perimeter. CoRR, abs/1603.07077 (2016)Google Scholar
  13. 13.
    Giesen, J.: Curve reconstruction, the traveling salesman problem and Menger’s theorem on length. In: Proceedings of 15th Annual Symposium on Computational Geometry (SoCG), pp. 207–216 (1999)Google Scholar
  14. 14.
    Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-city problem. Math. Program. Study 12, 61–77 (1980)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Springer, New York (2007)CrossRefMATHGoogle Scholar
  16. 16.
    Jünger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. In: Handbooks in Operations Research and Management Science, vol. 7, pp. 225–330 (1995)Google Scholar
  17. 17.
    Land, A.: The solution of some 100-city Travelling Salesman Problems, Technical report, London School of Economics (1979)Google Scholar
  18. 18.
    Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)MATHGoogle Scholar
  19. 19.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Pferschy, U., Stanek, R.: Generating subtour constraints for the TSP from pure integer solutions. Department of Statistics and Operations Research, University of Graz, Technical report (2014)Google Scholar
  23. 23.
    Reinelt, G.: TSPlib - a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wein, R., Berberich, E., Fogel, E., Halperin, D., Hemmer, M., Salzman, O., Zukerman, B.: 2D arrangements. In: CGAL User and Reference Manual, 4.3rd edn. CGAL Editorial Board (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sándor P. Fekete
    • 1
  • Andreas Haas
    • 1
  • Michael Hemmer
    • 1
  • Michael Hoffmann
    • 2
  • Irina Kostitsyna
    • 3
  • Dominik Krupke
    • 1
  • Florian Maurer
    • 1
  • Joseph S. B. Mitchell
    • 4
  • Arne Schmidt
    • 1
  • Christiane Schmidt
    • 5
  • Julian Troegel
    • 1
  1. 1.TU BraunschweigBraunschweigGermany
  2. 2.ETH ZurichZurichSwitzerland
  3. 3.TU EindhovenEindhovenThe Netherlands
  4. 4.Stony Brook UniversityStony BrookUSA
  5. 5.Linköping UniversityLinköpingSweden

Personalised recommendations