Skip to main content

Functional Triboluminescent Nanophase for Use in Advanced Structural Materials: A Smart Premise with Molecular and Electronic Definition

  • Chapter
  • First Online:
  • 1078 Accesses

Abstract

Triboluminescence (TL) phenomenon is synonymous with fractoluminescence (the emission of light from a crystal when external energy is absorbed by a small amount of trapped gas bubbles), which is most likely caused by the separation and recombination of electronic charges. The behavior of photoemission was explained in terms of the tribomicro-plasma phenomenon due to electronic discharge of the surrounding molecular nitrogen gas. The interaction between the charge generation and the charge conversion is responsible for the formation of various TL patterns. In this chapter, some recent experimental outcomes with structural applications are briefly discussed along with the interpretation of this important scientific phenomenon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Armelao, L., Bottaro, G., Pascolini, M., Sessolo, M., Tondello, E., Bettinelli, M., & Speghini, A. (2008). Structure–luminescence correlations in europium-doped sol–gel ZnO nanopowders. The Journal of Physical Chemistry C, 112, 4049–4054.

    Google Scholar 

  2. Bhat, K. N., Fontenot, R. S., Surabhi, R., Hollerman, W. A., Aggarwal, M. D., & Alapati, T. R. (2014). Measurement of the triboluminescent properties for europium and samarium tetrakis dibenzoylmethide triethylammonium. Electronic Materials Letters, 10, 1149–1153.

    Article  Google Scholar 

  3. Chapman, G. N., & Walton, A. J. (1983). Triboluminescence of fluorites. Journal of Physics C: Solid State Physics, 16, 5543.

    Article  Google Scholar 

  4. Chen, X., Li, J., Zhang, G., & Shi, Y. (2011). PZT nanoactive fiber composites for acoustic emission detection. Advanced Materials, 23, 3965–3969.

    Article  Google Scholar 

  5. Dickens, T., Armbrister, C., Olawale, D., & Okoli, O. (2015). Characterization of triboluminescent enhanced discontinuous glass–fiber composite beams for micro-damage detection and fracture assessment. Journal of Luminescence, 163, 1–7.

    Article  Google Scholar 

  6. Dickens, T. J., Breaux, J., Olawale, D. O., Sullivan, W. G., & Okoli, O. I. (2012). Effects of ZnS:Mn concentrated vinyl ester matrices under flexural loading on the triboluminescent yield. Journal of Luminescence, 132, 1714–1719.

    Article  Google Scholar 

  7. Dickens, T. J., & Okoli, O. I. (2011). Enabling damage detection: Manufacturing composite laminates doped with dispersed triboluminescent materials. Journal of Reinforced Plastics and Composites, 30, 1869–1876.

    Article  Google Scholar 

  8. Dickens, T. J., Olawale, D. O., & Okoli, O. I. (2011). Toward triboluminescent sensor realization for SHM. SPIE.

    Google Scholar 

  9. Duignan, J. P., Oswald, I. D. H., Sage, I. C., Sweeting, L. M., Tanaka, K., Ishihara, … Bourhill, G. (2002). Do triboluminescence spectra really show a spectral shift relative to photoluminescence spectra? Journal of Luminescence, 97, 115–126.

    Google Scholar 

  10. Eddingsaas, N. C., & Suslick, K. S. (2006). Light from sonication of crystal slurries. Nature, 444, 163.

    Article  Google Scholar 

  11. Eddingsaas, N. C., & Suslick, K. S. (2007). Intense mechanoluminescence and gas phase reactions from the sonication of an organic slurry. Journal of the American Chemical Society, 129, 6718.

    Article  Google Scholar 

  12. Fontenot, R. S., Allison, S. W., Lynch, K. J., Hollerman, W. A., & Sabri, F. (2016). Mechanical, spectral, and luminescence properties of ZnS:Mn doped PDMS. Journal of Luminescence, 170(Part 1), 194–199.

    Article  Google Scholar 

  13. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., Aggarwal, M. D., & Penn, B. G. (2014). Incorporating strongly triboluminescent europium dibenzoylmethide triethylammonium into simple polymers. Polymer Journal, 46, 111–116.

    Article  Google Scholar 

  14. Frangopol, D. M., Bocchini, P., Deco, A., Kim, S., Kwon, K., Okasha, N. M., & Saydam, D. (2012). Integrated life-cycle framework for maintenance, monitoring, and reliability of naval ship structures. Naval Engineers Journal, 124, 89–99.

    Google Scholar 

  15. Freeman, G. R., & March, N. H. (1999). Triboelectricity and some associated phenomena. Materials Science and Technology, 15, 1454–1458.

    Article  Google Scholar 

  16. Gross, G., Stranski, I. N., & Wolff, G. (1955). Zeitschrift für Elektrochemie, 59, 346.

    Google Scholar 

  17. Halliday, D., Resnick, R., & Walke, J. (1970). Fundamentals of Physics (6th ed.). New York, NY: Wiley.

    Google Scholar 

  18. Hollerman, W. A., Fontenot, R. S., Bhat, K. N., Aggarwal, M. D., Guidry, C. J., & Nguyen, K. M. (2013). Review of triboluminescence impact research at projectile speeds of 1 m/s to 6 km/s. Procedia Engineering, 58, 392–400.

    Article  Google Scholar 

  19. Leelachao, S., Muraishi, S., Sannomiya, T., Shi, J., & Nakamura, Y. (2016). Correlation of triboluminescence and contact stresses in ZnS:Mn/polymeric matrix composite. Journal of Luminescence, 170(Part 1), 24–29.

    Article  Google Scholar 

  20. Leelachao, S., Muraishi, S., Sannomiya, T., Shi, J., & Namamura, Y. (2015). Mechanoluminescence of ZnS:Mn phosphors and its correlation to impact energy and contact geometry. Optics Letters, 40, 4468–4471.

    Article  Google Scholar 

  21. Longchambon, H. (1922). Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 174, 1633.

    Google Scholar 

  22. Longchambon, H. (1923). Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 176, 691.

    Google Scholar 

  23. Longchambon, H. (1925). Bulletin de la Societe Francaise de Mineralogie, 48, 130.

    Google Scholar 

  24. Meraghni, F., Desrumaux, F., & Benzeggagh, M. L. (2002). Implementation of a constitutive micromechanical model for damage analysis in glass mat reinforced composite structures. Composites Science and Technology, 62, 2087–2097.

    Article  Google Scholar 

  25. Nguyen, B. N., Gao, F., Henager, C. H., Jr., & Kurtz, R. J. (2014). Prediction of thermal conductivity for irradiated SiC/SiC composites by informing continuum models with molecular dynamics data. Journal of Nuclear Materials, 448, 364–372.

    Article  Google Scholar 

  26. Nguyen, B. N., & Kunc, V. (2010). An elastic-plastic damage model for long-fiber thermoplastics. International Journal of Damage Mechanics, 19, 691–725.

    Article  Google Scholar 

  27. Olawale, D. O., Dickens, T., Sullivan, W. G., Okoli, O. I., Sobanjo, J. O., & Wang, B. (2011). Progress in triboluminescence-based smart optical sensor system. Journal of Luminescence, 131, 1407–1418.

    Google Scholar 

  28. Olawale, D. O., Dickens, T., Uddin, M. J., & Okoli, O. I. (2012). Triboluminescence multifunctional cementitious composites with in-situ damage sensing capability. SPIE, San Diego, CA.

    Google Scholar 

  29. Olawale, D. O., Kliewer, K., Okoye, A., Dickens, T., Uddin, M. J., & Okoli, O. I. (2014). Getting light through cementitious composites with in situ triboluminescent damage sensor. Structural Health Monitoring, 13, 177–189.

    Article  Google Scholar 

  30. Olawale, D. O., Kliewer, K., Okoye, A., Dickens, T. J., Uddin, M. J., & Okoli, O. I. (2014). Real time failure detection in unreinforced cementitious composites with triboluminescent sensor. Journal of Luminescence, 147, 235–241.

    Article  Google Scholar 

  31. Olawale, D. O., Sullivan, G., Dickens, T., Tsalickis, S., Okoli, O. I., Sobanjo, J. O., & Wang, B. (2012). Development of a triboluminescence-based sensor system for concrete structures. Structural Health Monitoring, 11, 139–147.

    Google Scholar 

  32. Olawale, D. O., Kliewer, K., Dickens, T., Uddin, M. J., & Okoli, O. I. (2013). Triboluminescent optical nerves for smart concrete structures. Structural Health Monitoring, 1–2, 1376–1383.

    Google Scholar 

  33. Sage, I., & Bourhill, G. (2001). Triboluminescent materials for structural damage monitoring. Journal of Materials Chemistry, 11, 231–245.

    Article  Google Scholar 

  34. Sage, I., Bourhill, G., & Oswald, I. (2007). Triboluminescent materials and devices. US Patent, US7270770 B2.

    Google Scholar 

  35. Sage, I., Humberstone, L., Oswald, I., Lloyd, P., & Bourhill, G. (2001). Getting light through black composites: Embedded triboluminescent structural damage sensors. Smart Materials and Structures, 10, 332.

    Article  Google Scholar 

  36. Sage, I., Badcock, R., Humberstone, L., Geddes, N., Kemp, M., Bishop, S., et al. (1999). Triboluminescent damage sensors. Smart Structures and Materials Technologies, 3675, 169.

    Google Scholar 

  37. Selle, B. (1964). Das Abklingen der Lumineszenz von ZnS: Mn bei Anregung im Gebiet der Mn-Eigenabsorption. Physica Status Solidi B, 5, 649–656.

    Article  Google Scholar 

  38. Sharipov, G. L., Tukhbatullin, A. A., & Abdrakhmanov, A. M. (2011). Triboluminescence of crystals and suspensions of inorganic salts of lanthanides. Protection of Metals and Physical Chemistry of Surfaces, 47, 13–19.

    Article  Google Scholar 

  39. Sielski, R. A. (2012). Ship structural health monitoring research at the office of naval research. JOM, 64, 823–827.

    Article  Google Scholar 

  40. Sweeting, L. M. (2001). Triboluminescence with and without Air. Chemistry of Materials, 13, 854–870.

    Article  Google Scholar 

  41. Sweeting, L. M., Cashel, M. L., Dott, M., Gingerich, J. M., Guido, J. L., Kling, J. A., … Spence, R. A. (1992). Spectroscopy and mechanism in triboluminescence. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 211, 389–396.

    Google Scholar 

  42. Sweeting, L. M., Cashel, M. L., Dott, M., Gingerich, J. M., Guido, J. L., Pippin, R. F., III, … Spence, R. A. (1992). Molecular Crystals and Liquid Crystals, 211, 389.

    Google Scholar 

  43. Sweeting, L. M., Cashel, M. L., & Rosenblatt, M. M. (1992). Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition. Journal of Luminescence, 52, 281–291.

    Article  Google Scholar 

  44. Sweeting, L. M., Rheingold, A. L., Gingerich, J. M., Rutter, A. W., Spence, R. A., Cox, C. D., & Kim, T. J. (1997). Crystal structure and triboluminescence .2. 9-anthracenecarboxylic acid and its esters. Chemistry of Materials, 9, 1103–1115.

    Google Scholar 

  45. Takada, N., Sugiyama, J.-I., Katoh, R., Minami, N., & Hieda, S. (1997). Mechanoluminescent properties of europium complexes. Synthetic Metals, 91, 351–354.

    Article  Google Scholar 

  46. Uddin, M. J., Daramola, D. E., Velasquez, E., Dickens, T. J., Yan, J., Hammel, E., … Okoli, O. I. (2014). A high efficiency 3D photovoltaic microwire with carbon nanotubes (CNT)-quantum dot (QD) hybrid interface. Physica Status Solidi (RRL) - Rapid Research Letters, 8, 898–903.

    Google Scholar 

  47. Uddin, M. J., Davies, B., Dickens, T. J., & Okoli, O. I. (2013). Self-aligned carbon nanotubes yarns (CNY) with efficient optoelectronic interface for microyarn shaped 3D photovoltaic cells. Solar Energy Materials & Solar Cells, 115, 166–171.

    Article  Google Scholar 

  48. Uddin, M. J., Dickens, T., Yan, J., Chirayath, R., Olawale, D. O., & Okoli, O. I. (2013). Solid-state dye sensitized photovoltaic micro-wires (DSPM) with CNT yarn as counter electrode: Synthesis and characterization. Solar Energy Materials & Solar Cells, 108, 65–69.

    Article  Google Scholar 

  49. Uddin, M. J., Dickens, T. J., Yan, J., Olawale, D. O., Okoli, O. I., & Cesano, F. (2012). Solid-state dye sensitized optoelectronic carbon nanotube-wires: An energy harvesting damage sensor with nanotechnology approach. ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 8200, 19–21.

    Google Scholar 

  50. Uddin, M. J., Dickens, T. J., Yan, J., Olawale, D. O., Okoli, O. I., Cesano, F., & ASME. (2013). Solid-state dye sensitized optoelectronic carbon nanotube-wires: An energy harvesting damage sensor with nanotechnology approach.

    Google Scholar 

  51. Valeur, B., & Berberan-Santos, M. N. (2011). A brief history of fluorescence and phosphorescence before the emergence of quantum theory. Journal of Chemical Education, 88, 731–738.

    Article  Google Scholar 

  52. Walton, A. (1977). Journal of Advanced Physics, 26, 887.

    Article  Google Scholar 

  53. Walton, A. J. (1977). Triboluminescence. Advances in Physics, 26, 887–948.

    Article  Google Scholar 

  54. Womack, F. N., Goedeke, S. M., Bergeron, N. P., Hollerman, W. A., & Allison, S. W. (2004). Measurement of triboluminescence and proton half brightness dose for ZnS : Mn. IEEE Transactions on Nuclear Science, 51, 1737–1741.

    Article  Google Scholar 

  55. Yan, J., Uddin, M. J., Dickens, T., Olawale, D. O., & Okoli, O. I. (2013). 3D photovoltaic sensors for in-situ structural health monitoring of advanced composites. Structural Health Monitoring, 1 & 2, 1645–1653.

    Google Scholar 

  56. Yan, J., Uddin, M. J., Dickens, T. J., Daramola, D. E., & Okoli, O. I. (2014). 3D wire-shaped dye-sensitized solar cells in solid state using carbon nanotube yarns with hybrid photovoltaic structure. Advanced Materials Interfaces, 1, 1400075.

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support of the National Science Foundation (NSF) under NSF Award (CMMI-0969413) and The Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jasim Uddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uddin, M.J., Olawale, D.O., Yan, J., Moore, J., Okoli, O.O.I. (2016). Functional Triboluminescent Nanophase for Use in Advanced Structural Materials: A Smart Premise with Molecular and Electronic Definition. In: Olawale, D., Okoli, O., Fontenot, R., Hollerman, W. (eds) Triboluminescence. Springer, Cham. https://doi.org/10.1007/978-3-319-38842-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38842-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38841-0

  • Online ISBN: 978-3-319-38842-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics